在现代计算机系统中,I/O操作是非常重要的一部分,它们通常包括读取或写入文件、网络通信等。然而,由于I/O操作通常涉及到硬件设备,其速度远远低于CPU和内存的处理速度,因此,如何高效地处理I/O操作,是一个重要的问题。
这篇文章讨论了使用eBPF(扩展的伯克利包过滤器)来分析和基准测试代码。eBPF是一种强大的技术,允许开发人员在无需更改内核源代码或添加额外模块的情况下,在Linux内核中运行沙盒程序。这种功能特别适用于性能监控、安全性和网络管理。
在 Linux 系统之中有一个核心武器:epoll 池,在高并发的,高吞吐的 IO 系统中常常见到 epoll 的身影。
不同于传统的“一个进程处理一个客户端请求”的方式,IO复用可以让一个进程处理多个客户端的请求,更加节省资源。
I/O(Input/Output)模型是计算机科学中的一个关键概念,它涉及到如何进行输入和输出操作,而这在计算机应用中是不可或缺的一部分。在不同的应用场景下,选择正确的I/O模型是至关重要的,因为它会影响到应用程序的性能和响应性。本文将深入探讨四种主要I/O模型:阻塞,非阻塞,多路复用,signal driven I/O,异步IO,以及它们的应用。
事件循环是Node.js能够实现非阻塞I/O的基础,尽管JavaScript应用是单线程运行的,但是它可以将操作向下传递到系统内核去执行。
Ansible提供两种方式去完成任务,一是 ad-hoc 命令,一是写 Ansible playbook.前者可以解决一些简单的任务, 后者解决较复杂的任务。
原文链接:http://scotdoyle.com/python-epoll-howto.html
在Linux系统编程中,IO流(Input/Output Streams)是一个非常重要的概念。高级IO流是基于基本IO操作(如read、write等)之上的扩展,提供了更强大的功能和更高效的操作方式。本文将深入探讨Linux中的高级IO流,重点介绍其原理和使用方法,并提供相应的C++代码示例。
工作队列常见的使用形式是配合中断使用,在中断的服务函数里无法调用会导致休眠的相关函数代码,有了工作队列机制以后,可以将需要执行的逻辑代码放在工作队列里执行,只需要在中断服务函数里触发即可,工作队列是允许被重新调度、睡眠。
https://github.com/caijinlin/learning-pratice/tree/master/linux/io
哈哈,反正我在面试时候经常会问候选人这个问题,这个问题其实是对redis内部机制的一个考察,可以牵扯出好多涉及底层深入原理的一些列问题。
一、结论 提出这个问题说明对网络编程的一些基础原理未搞明白,先说下结论: 一个 socket 是否设置为阻塞模式,只会影响到 connect/accept/send/recv 等四个 socket API 函数,不会影响到 select/poll/epoll_wait 函数,后三个函数的超时或者阻塞时间是由其函数自身参数控制的。 二、原理分析 下面详细的解释,为了方便解释,在这之前我们先明确几个基础概念: connfd:创建 socket,主动发起连接的一端(客户端),该端调用 connect 函数主动发起
本系列我们介绍消息队列 Kombu。Kombu 的定位是一个兼容 AMQP 协议的消息队列抽象。通过本文,大家可以了解 Kombu 中的 Hub 概念。
写这个小结主要是因为之前研究Boost.Asio的时候,其内部使用了很多不同的方法来实现异步网络编程 然后就顺便把一些高级的玩意看了一下,也顺便把以前低级的玩意放到一起,哇哈哈。很多东西只是个人的理解,不一定正确
linux系统下一切皆文件,我们几乎无时无刻不在跟文件打交道。内核对文件I/O做了很好的封装,使得开发人员便捷地操作文件,但也因此隐藏了很多细节。如果对其不求甚解,在实际开发中可能会碰到一些意想不到的问题。这次,让我们手拿放大镜,一起窥探文件I/O的全貌。
备注:I/O复用可以调用select/poll阻塞在这两个系统调用中的某一个上,而不是阻塞在真正的I/O系统调用上。图示中应用进程阻塞于select调用,等待数据报套接字变为可读,当select返回套接字可读这一条件时,调用recvfrom把所读数据复制到应用进程缓冲区。特点:select等待多个描述符就绪;即图示中第1步可以等待多个文件描述符。
IO 有两种操作,同步 IO 和 异步 IO。同步 IO 指的是,必须等待 IO 操作完成后,控制权才返回给用户进程。异步 IO 是,无须等待 IO 操作完成,就将控制权返回给用户进程。
信号有三种写法,如 -9、-SIGKILL 和 -KILL,特别有用的信号包括 HUP、INT、KILL、STOP、CONT 和 0,可以使用 -l 或 -L 已列出可使用的信号。
在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在linux新的内核中,有了一种替换它的机制,就是epoll。
1.网卡发现 MAC 地址符合,就将包收进来;发现 IP 地址符合,根据 IP 头中协议项,知道上一层是 TCP 协议;
0.前言 为提升信鸽基础服务质量,笔者就网络收包全流程进行了内容整理。 网络编程中我们接触得比较多的是socket api和epoll模型,对于系统内核和网卡驱动接触得比较少,一方面可能我们的系统没有需要深度调优的需求,另一方面网络编程涉及到硬件,驱动,内核,虚拟化等复杂的知识,使人望而却步。网络上网卡收包相关的资料也比较多,但是比较分散,在此梳理了网卡收包的流程,分享给大家,希望对大家有帮助,文中引用了一些同事的图表和摘选了网上资料,在文章最后给出了参考文献与部分来源,感谢这些作者的分享。 1.整体流程
本文由 sugerpocket 首发于 IMWeb 社区网站 imweb.io。点击阅读原文查看 IMWeb 社区更多精彩文章。 众所周知,javascript 是单线程的,其通过使用异步而不阻塞主进程执行。那么,他是如何实现的呢?本文就浏览器与nodejs环境下异步实现与event loop进行相关解释。 浏览器环境 浏览器环境下,会维护一个任务队列,当异步任务到达的时候加入队列,等待事件循环到合适的时机执行。 实际上,js 引擎并不只维护一个任务队列,总共有两种任务 Task(macroTask): s
这是05年的老文章,网上应该有人早就翻译过了,我翻译它仅仅为了学习Reactor/Proactor两种TCP服务器设计模式,顺便作翻译练习。
妈妈怎么知道卧室里小孩醒了? ① 时不时进房间看一下:查询方式 简单,但是累 ② 进去房间陪小孩一起睡觉,小孩醒了会吵醒她:休眠-唤醒 不累,但是妈妈干不了活了 ③ 妈妈要干很多活,但是可以陪小孩睡一会,定个闹钟:poll方式 要浪费点时间,但是可以继续干活。 妈妈要么是被小孩吵醒,要么是被闹钟吵醒。 ④ 妈妈在客厅干活,小孩醒了他会自己走出房门告诉妈妈:异步通知 妈妈、小孩互不耽误
众所周知,javascript是单线程的,其通过使用异步而不阻塞主进程执行。那么,他是如何实现的呢?本文就浏览器与nodejs环境下异步实现与event loop进行相关解释。
io_uring是Linux内核在v5.1引入的一套异步IO接口,随着其迅速发展,现在的io_uring已经远远超过了纯IO的范畴。从Linux v5.3版本开始,io_uring陆续添加了网络编程相关的API,对用户提供sendmsg、recvmsg、accept、connect等接口的异步支持,将io_uring的生态范围扩大到了网络领域。
我们都知道unix世界里、一切皆文件、而文件是什么呢?文件就是一串二进制流而已、不管socket、还是FIFO、管道、终端、对我们来说、一切都是文件、一切都是流、在信息交换的过程中、我们都是对这些流进行数据的收发操作、简称为I/O操作(input and output)、往流中读出数据、系统调用read、写入数据、系统调用write、不过话说回来了、计算机里有这么多的流、我怎么知道要操作哪个流呢?做到这个的就是文件描述符、即通常所说的fd(file descriptor)、一个fd就是一个整数、所以对这个整数的操作、就是对这个文件(流)的操作、我们创建一个socket、通过系统调用会返回一个文件描述符、那么剩下对socket的操作就会转化为对这个描述符的操作、不能不说这又是一种分层和抽象的思想、
在Linux编程中,一切皆文件,往往是对一个文件进行操作,比如说串口,和传感器打交道,一般情况下就是一来一去,一收一发,但是,如果我有多个传感器,而传感器之间又有关联,我想同时监控一个或者多个以上的文件描述符,要如何去实现这个需求呢?
进程在 Linux 上是一个开销不小的家伙,先不说创建,光是上下文切换一次就得几个微秒。所以为了高效地对海量用户提供服务,必须要让一个进程能同时处理很多个 tcp 连接才行。现在假设一个进程保持了 10000 条连接,那么如何发现哪条连接上有数据可读了、哪条连接可写了 ?
linux操作系统包含了五种IO模型,各种上层编程语言或者网络编程框架的上层实现都是基于操作系统的这些IO实现来实现的。
evio 是一个基于事件驱动的网络框架,它非常轻量而且相比 Go net 标准库更快。其底层使用epoll 和 kqueue 系统调度实现。
IO模型 只关注IO,不关注IO读写完成后的事情。 同步:程序(APP)自己进行读/写操作 异步:由Kernel完成读/写,程序跑起来感觉像没有访问IO,访问的是buffer 阻塞:BLOCKING,一直等待着方法有效的返回结果 非阻塞:NONBLOCKING,调用方法的时候就返回是否读取到,(java中要么返回null,要么返回具体的对象) 所以IO模型有: 同步阻塞:程序(APP)自己读取,调用了方法后一直等待着有效的返回结果 同步非阻塞:程序(APP)自己读取,调用方法的瞬间就给出是否读取到的返回结
结论:协程任务开启,并不一定会执行,它需要I/O(阻塞)才能执行,上面代码的time.sleep(1)模拟了I/O(阻塞)
综合 select 和 poll 的一些优缺点,Linux 从内核 2.6 版本开始引入了更高效的 epoll 模型,本节我们来详细介绍 epoll 模型。
应用层采用超时机制访问驱动设备。即如果第一次访问可以使用直接返回,若不能访问,则先将应用层休眠,在到了设定的时间,再访问一次,此时可以访问则返回成功标志,若不能访问则返回失败。
同步阻塞IO在等待数据就绪上花去太多时间,而传统的同步非阻塞IO虽然不会阻塞进程,但是结合轮询来判断运维
Java中的Queue是一种先进先出(FIFO)的数据结构,它继承自Collection接口,并扩展了java.util.AbstractQueue抽象类。Queue是Java集合框架中最重要的一种数据结构,因为它是Java并发编程中的重要组成部分,可以被用于实现各种任务调度、消息队列、缓存、事件处理等应用场景。本文将对Java中的Queue进行详细介绍,包括Queue的基本概念、特点、用法和示例。
select的本质是采用32个整数的32位,即32*32= 1024来标识,fd值为1-1024。当fd的值超过1024限制时,就必须修改FD_SETSIZE的大小。这个时候就可以标识32*max值范围的fd。
epoll有EPOLLLT和EPOLLET两种触发模式,水平触发和边缘触发. 此处略
首先,我们要了解IO复用模型之前,先要了解在Linux内核中socket事件机制在内核底层是基于什么机制实现的,它是如何工作的,其次,当我们对socket事件机制有了一个基本认知之后,那么我们就需要思考到底什么是IO复用,基于socket事件机制的IO复用是怎么实现的,然后我们才来了解IO复用具体的实现技术,透过本质看select/poll/epoll的技术优化,逐渐去理解其中是为了解决什么问题而出现的,最后本文将围绕上述思维导图列出的知识点进行分享,还有就是文章幅度较长且需要思考,需要认真阅读!
select、poll 和 epoll 都是 Linux API 提供的 IO 复用方式。
http://www.cnblogs.com/Anker/p/3265058.html
I/O基础 1、java1.4之前,java对I/O支持不完善,存在以下问题: 没有数据缓冲区,I/O性能存在问题。 没有C或者C++的channel概念,只有输入输出流。 同步式阻塞式I/O通信,通常会导致通信线程被长时间阻塞。 支持的字符集有限,硬件可移植性不好。 2、Linux网络I/O模型 Linux内核将所有外部设备都看作一个文件来操作,对文件的操作都会调用内核提供的系统命令,返回一个fd(文件描述符)。 描述符就是一个数字,它指向内核中的一个结构体(文件路径,数据区等属性)。 fd演示:
这些函数的名字基本都可以自解释。 再介绍下misc 设备,linux 内核将一些不符合预先确定的字符设备划分为杂项设备,使用的数据结构如下;
领取专属 10元无门槛券
手把手带您无忧上云