io_uring是Linux内核在v5.1引入的一套异步IO接口,随着其迅速发展,现在的io_uring已经远远超过了纯IO的范畴。从Linux v5.3版本开始,io_uring陆续添加了网络编程相关的API,对用户提供sendmsg、recvmsg、accept、connect等接口的异步支持,将io_uring的生态范围扩大到了网络领域。
这里我将对比一下常见的多路复用技术:select、poll、epoll、kqueue 和 IOCP(Windows)。
linux操作系统包含了五种IO模型,各种上层编程语言或者网络编程框架的上层实现都是基于操作系统的这些IO实现来实现的。
Linux 的内核将所有外部设备都看做一个文件来操作(一切皆文件),对一个文件的读写操作会调用内核提供的系统命令,返回一个file descriptor(fd,文件描述符)。而对一个socket的读写也会有响应的描述符,称为socket fd(socket文件描述符),描述符就是一个数字,指向内核中的一个结构体(文件路径,数据区等一些属性)。
通过前面的文章我们已经了解了「数据包从HTTP层->TCP层->IP层->网卡->互联网->目的地服务器」以及「数据包怎么从网线到进程,在被应用程序使用」涉及的知识。 本文将继续介绍网络编程中的各种细节和IO多路复用的原理。
也叫 同步阻塞IO , 请求数据的进程需要一直阻塞等待读取完成才能返回,同时整个读取的动作也是要同步等待I/O操作的完成才返回。
妈妈怎么知道卧室里小孩醒了? ① 时不时进房间看一下:查询方式 简单,但是累 ② 进去房间陪小孩一起睡觉,小孩醒了会吵醒她:休眠-唤醒 不累,但是妈妈干不了活了 ③ 妈妈要干很多活,但是可以陪小孩睡一会,定个闹钟:poll方式 要浪费点时间,但是可以继续干活。 妈妈要么是被小孩吵醒,要么是被闹钟吵醒。 ④ 妈妈在客厅干活,小孩醒了他会自己走出房门告诉妈妈:异步通知 妈妈、小孩互不耽误
在Linux网络编程中,常常使用select和poll来做事件触发,监听socket的读写状态,然后进行读写操作。现在新的linux内核中,增加了epoll事件触发机制,具有更高的性能和更好的设计理念,可以用它来完全代替select和poll。相比于select,epoll最大的好处在于它不会随监听fd数目的增长而降低效率。因为在内核总的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件中有这样的声明: [cpp] view pl
因为要对百万、千万、甚至是过亿的用户提供各种网络服务,所以在一线互联网企业里面试和晋升后端开发同学的其中一个重点要求就是要能支撑高并发,要理解性能开销,会进行性能优化。而很多时候,如果你对网络底层的理解不深的话,遇到很多线上性能瓶颈你会觉得狗拿刺猬,无从下手。
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
一、结论 提出这个问题说明对网络编程的一些基础原理未搞明白,先说下结论: 一个 socket 是否设置为阻塞模式,只会影响到 connect/accept/send/recv 等四个 socket API 函数,不会影响到 select/poll/epoll_wait 函数,后三个函数的超时或者阻塞时间是由其函数自身参数控制的。 二、原理分析 下面详细的解释,为了方便解释,在这之前我们先明确几个基础概念: connfd:创建 socket,主动发起连接的一端(客户端),该端调用 connect 函数主动发起
应用层采用超时机制访问驱动设备。即如果第一次访问可以使用直接返回,若不能访问,则先将应用层休眠,在到了设定的时间,再访问一次,此时可以访问则返回成功标志,若不能访问则返回失败。
上篇文章,我们介绍了Java IO框架的演变,其实编程语言的IO实现是依赖于底层的操作系统,如果OS内核不支持,那么语言层面也无能为力。任何一个跨平台的编程语言,一定是能够在不同操作系统之间选择使用最优的IO模型,那么不同平台的io策略都有哪些实现呢?本篇文章我们就来了解一下。
系列文章:http://www.jianshu.com/p/594441fb9c9e
因为项目需要,接触和使用了Netty,Netty是高性能NIO通信框架,在业界拥有很好的口碑,但知其然不知其所以然。
关于 select, poll, epoll,网络 IO 演变发展过程和模型介绍 这篇文章讲得很好,本文就不浪费笔墨了。
简单地说,它们就是“定个闹钟”:在调用 poll、select 函数时可以传入“超时时间”。在这段时间内,条件合适时(比如有数据可读、有空间可写)就会立刻返回,否则等到“超时时间”结束时返回错误。
欢迎与我分享你的看法。 转载请注明出处:http://taowusheng.cn/
中文地址: https://www.oschina.net/translate/c10k
说到IO模型,都会牵扯到同步、异步、阻塞、非阻塞这几个词。从词的表面上看,很多人都觉得很容易理解。但是细细一想,却总会发现有点摸不着头脑。自己也曾被这几个词弄的迷迷糊糊的,每次看相关资料弄明白了,然后很快又给搞混了。
本文作者张彦飞,原题“127.0.0.1 之本机网络通信过程知多少 ”,首次发布于“开发内功修炼”,转载请联系作者。本次有改动。
网络IO会涉及到同步,异步,阻塞,非阻塞等几个概念。一个网络IO读取过程是数据从 网卡 到 内核缓冲区 到 用户内存 的过程。同步和异步区别在于数据从内核到用户内存的过程是否需要用户进行等待。
对于高性能即时通讯技术(或者说互联网编程)比较关注的开发者,对C10K问题(即单机1万个并发连接问题)应该都有所了解。“C10K”概念最早由Dan Kegel发布于其个人站点,即出自其经典的《The C10K problem(英文PDF版、中文译文)》一文。
在Linux编程中,一切皆文件,往往是对一个文件进行操作,比如说串口,和传感器打交道,一般情况下就是一来一去,一收一发,但是,如果我有多个传感器,而传感器之间又有关联,我想同时监控一个或者多个以上的文件描述符,要如何去实现这个需求呢?
IO模型 只关注IO,不关注IO读写完成后的事情。 同步:程序(APP)自己进行读/写操作 异步:由Kernel完成读/写,程序跑起来感觉像没有访问IO,访问的是buffer 阻塞:BLOCKING,一直等待着方法有效的返回结果 非阻塞:NONBLOCKING,调用方法的时候就返回是否读取到,(java中要么返回null,要么返回具体的对象) 所以IO模型有: 同步阻塞:程序(APP)自己读取,调用了方法后一直等待着有效的返回结果 同步非阻塞:程序(APP)自己读取,调用方法的瞬间就给出是否读取到的返回结
写这个小结主要是因为之前研究Boost.Asio的时候,其内部使用了很多不同的方法来实现异步网络编程 然后就顺便把一些高级的玩意看了一下,也顺便把以前低级的玩意放到一起,哇哈哈。很多东西只是个人的理解,不一定正确
上一篇文章 《漫谈socket-io的基本原理》 用了现实非常浅显的例子,尽可能地阐释非阻塞、阻塞、多线程、多路复用poll和 epoll 背后演进的整体思考脉络,将有助于读者从宏观的角度把握住socket-io的本质。 本文将聚焦在JDK socket-io 的多路复用 poll/epoll 的实现原理,可能比较枯燥复杂,为了降低理解成本,作者尽可能循序渐进,控制每个步骤的信息量。
0.前言 为提升信鸽基础服务质量,笔者就网络收包全流程进行了内容整理。 网络编程中我们接触得比较多的是socket api和epoll模型,对于系统内核和网卡驱动接触得比较少,一方面可能我们的系统没有需要深度调优的需求,另一方面网络编程涉及到硬件,驱动,内核,虚拟化等复杂的知识,使人望而却步。网络上网卡收包相关的资料也比较多,但是比较分散,在此梳理了网卡收包的流程,分享给大家,希望对大家有帮助,文中引用了一些同事的图表和摘选了网上资料,在文章最后给出了参考文献与部分来源,感谢这些作者的分享。 1.整体流程
作为即时通讯技术的开发者来说,高性能、高并发相关的技术概念早就了然与胸,什么线程池、零拷贝、多路复用、事件驱动、epoll等等名词信手拈来,又或许你对具有这些技术特征的技术框架比如:Java的Netty、Php的workman、Go的nget等熟练掌握。但真正到了面视或者技术实践过程中遇到无法释怀的疑惑时,方知自已所掌握的不过是皮毛。
Java作为一门后端语言,对于网络编程的支持是必不可少的,但是,作为一个经常CRUD的Java工程师,很多时候都不需要接触到网络编程,自然而然地对这个东西不那么重视了,毕竟,即使像是JVM虚拟机,Java多线程,在平时工作的时候还会用到一些,但是对于网络编程,除非你做的东西确实是需要自己写通讯服务代码的,比如网络游戏,以及偏向中间件方向的开发, 可能会接触到一些网络编程的实践,要不然在平时的开发工作中确实不多见。
一、linux网络IO模型:linux将所有外部设备都当作文件处理,对一个文件的读写操作通过调用内核命令执行,返回一个file descriptor(fd 文件描述符),而对于一个socket也有对应的socketFD,描述符是一个数字,指向内核中的一个结构体(文件路径,数据区属性等)。
socket编程的demo中使用的都是最基本的,但是一般不会真正用在项目中的代码。而实际项目中,需要面临复杂多变的需求环境,比如有多个socket连接,或者服务需要监听的时候,可能有很多socket连接进来。面对这种情况,最直接最简单的想法是,一个socket连接创建一个线程去处理。当然,在socket连接数较少的情况下,这种方式无可厚非,但是如果连接数量较大,就会出现意外情况。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。 并且,在linux/posix_types.h头文件有这样的声明: #define __FD_SETSIZE 1024 表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。
先抛出一个问题,基于此问题引出文章的主题:1999 年 Dan Kegel 在其个人站点提出了 C10K问题,首字母 C 是 Client 的缩写,C10K 即单机同时处理 1 万个连接的问题。C10K 表示处理 10000 个并发连接,注意这里的并发连接和每秒请求数不同,虽然它们是相似的,每秒处理许多请求需要很高的吞吐量(快速处理它们),但是更大数量的并发连接需要高效的连接调度,即 I/O 模型的问题。
在现代计算机系统中,I/O操作是非常重要的一部分,它们通常包括读取或写入文件、网络通信等。然而,由于I/O操作通常涉及到硬件设备,其速度远远低于CPU和内存的处理速度,因此,如何高效地处理I/O操作,是一个重要的问题。
我们都知道unix世界里、一切皆文件、而文件是什么呢?文件就是一串二进制流而已、不管socket、还是FIFO、管道、终端、对我们来说、一切都是文件、一切都是流、在信息交换的过程中、我们都是对这些流进行数据的收发操作、简称为I/O操作(input and output)、往流中读出数据、系统调用read、写入数据、系统调用write、不过话说回来了、计算机里有这么多的流、我怎么知道要操作哪个流呢?做到这个的就是文件描述符、即通常所说的fd(file descriptor)、一个fd就是一个整数、所以对这个整数的操作、就是对这个文件(流)的操作、我们创建一个socket、通过系统调用会返回一个文件描述符、那么剩下对socket的操作就会转化为对这个描述符的操作、不能不说这又是一种分层和抽象的思想、
上一篇文章讲解了I/O模型的一些基本概念,包括同步与异步,阻塞与非阻塞,同步IO与异步IO,阻塞IO与非阻塞IO。这次一起来了解一下现有的几种IO模型,以及高效IO的两种设计模式,也都是属于IO模型的基础知识。
但是web开发是一套综合的技术,牵涉到方方面面的知识。包括Linux服务器,TCP/IP网络,数据库,编程语言,HTML,JS,CSS等前端技术。
1、Nodejs 1) 简单的说 Node.js 就是运行在服务端的 JavaScript。 2) Node.js 是一个基于Chrome JavaScript 运行时建立的一个平台。 3) Node.js是一个事件驱动I/O服务端JavaScript环境,基于Google的V8引擎,V8引擎执行Javascript的速度非常快,性能非常好。 4) 我们写下的js代码,是在单线程的环境中执行,但nodejs本身不是单线程的。如果我们在代码中调用了nodejs提供的异步api(如IO等),它们可能是通过底层的
网络应用需要处理的无非就是两大类问题,网络I/O,数据计算。相对于后者,网络I/O的延迟,给应用带来的性能瓶颈大于后者。
一 概念理解 在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式: 同步: 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不会返回。按照这个定义,其实绝大多数函数都是同步调用。但是一般而言,我们在说同步、异步的时候,特指那些需要其他部件协作或者需要一定时间完成的任务。 举例: 1. multiprocessing.Pool下的apply #发起同步调用后,就在原地等着任务结束,根本不考虑任务是在计算还是在io
NIO和Netty面试题 NIO 阐述 NIO原理? BIO/NIO/AIO有什么区别?有哪些实现? 讲讲NIO的原理与实现?NIO用到了哪个经典技术思想?JDK1.8中NIO有做什么优化 了解多路复用机制 常见问题 同步阻塞、同步非阻塞、异步的区别? select、poll、eopll的区别? Linux网络IO模型 哪些库或者框架用到NIO? redis的事件驱动多路复用底层实现;引申到NIO编程 NIO解决了什么问题 有了解过mina? NIO的核心是什么?(IO线程池) ,问IO包的设计模式(装饰器
点击蓝字,关注我们 导言 splice pipe pool for splice pipe pool in HAProxy pipe pool in Go 小结 参考&延伸 导言 相信那些曾经使用 Go 写过 proxy server 的同学应该对 io.Copy()/io.CopyN()/io.CopyBuffer()/io.ReaderFrom 等接口和方法不陌生,它们是使用 Go 操作各类 I/O 进行数据传输经常需要使用到的 API,其中基于 TCP 协议的 socket 在使用上述接口和
man命令是Linux下的帮助指令,通过man指令可以查看Linux中的指令帮助、配置文件帮助和编程帮助等信息 可以按章节来搜索内容: man 1: 用户命令(ls,cd,cp,rm,tar等)
IO的阻塞与同步 IO即输入/输出(Input/Output)。每个应用系统都少不了交互,或多或少都会产生数据,而它们的核心:IO,其性能的发展明显落后于 CPU 。对于高性能、高并发的应用系统来说,回避IO瓶颈进而提升性能是至关重要的。 阻塞与非阻塞 一般来说,IO模型可以分为阻塞/非阻塞及同步/异步。先从简单的阻塞/非阻塞模型说起。 阻塞IO:用户进程发起IO操作后,必须等待IO操作完成才能继续运行。通信协议中的 Socket 编程,为了简单起见,也使用的这种方式。但这种方式会造成CPU大量闲置,系
看了一些文章,发现有很多不同的理解,可能是因为大家入切的角度、环境不一样。所以,我们先说明基本的IO操作及环境。
提到select、poll、epoll相信大家都耳熟能详了,三个都是IO多路复用的机制,可以监视多个描述符的读/写等事件,一旦某个描述符就绪(一般是读或者写事件发生了),就能够将发生的事件通知给关心的
领取专属 10元无门槛券
手把手带您无忧上云