首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Linux进程间通信(四) - 共享内存

共享内存的优势 采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因

06

UNIX 环境高级编程(第3版 )

《UNIX环境高级编程(第3版)》是被誉为UNIX编程“圣经”的Advanced Programming in the UNIX Environment一书的第3版。在本书第2版出版后的8年中,UNIX行业发生了巨大的变化,特别是影响UNIX编程接口的有关标准变化很大。本书在保持前一版风格的基础上,根据最新的标准对内容进行了修订和增补,反映了最新的技术发展。书中除了介绍UNIX文件和目录、标准I/O库、系统数据文件和信息、进程环境、进程控制、进程关系、信号、线程、线程控制、守护进程、各种I/O、进程间通信、网络IPC、伪终端等方面的内容,还在此基础上介绍了众多应用实例,包括如何创建数据库函数库以及如何与网络打印机通信等。此外,还在附录中给出了函数原型和部分习题的答案。

02

[linux][atop]atop的改进和在统计io上遇到的问题

前言 互联网公司一般都会运行着几千到几万的服务器。一般的监控会采用类似ganglia/falcon类似的工具,在本地启动一个agent,把数据统计上报到集中式的服务器中,用来监控和分析系统的问题。 另外,有atop这样的工具,可以运行在服务器上,在本地写下record文件,atop命令本身也可以分析record文件,其中保存的数据的粒度更加细致,可以精确到线程级别,还有IPC,主频等等。 经验来看,atop每天生成的record文件大约500M左右,保存最近的一段时间,似乎也不是问题。用集中式的监控,配合上atop,对于问题分析来说,会有一些帮助。 分析 1,atop的改进 atop的代码量本身并不大,官方的代码在: https://github.com/Atoptool/atop.git 在使用atop的过程中,遇到了一些问题,作者也做了相应的修改: https://github.com/bytedance/atop 在bytedance-features分支上。作者把patch发送给maintainer,但是maintainer一直没有回复。在这里,列举一下改动的内容,如下。 2,smaps的优化 尝试使用smaps_rollup代替smaps,用来提高atop收集进程的PSS内存使用的效率。这个patch会在4.14上有所提升。一般情况下,建议在atop收集的时候不要加上-R选项。因为在atop读/proc/PID/smaps的时候,会walk整个PID进程的页表,期间会lock住内存页表的锁。如果在这期间PID进程发生了page fault,也需要lock,就会造成锁的进程。影响PID进程的性能。 3,数据破损问题 atop使用裸数据的方式保存record文件,其中包括三部分:raw record,就是头信息; scompbuf,是系统状态信息的数据; pcompbuf,是task级的状态信息数据,大小和task数量有关系。为了减小record文件的大小,对于 scompbuf和pcompbuf还采用了压缩。所以,数据必须完整的 rr,scompbuf,pcompbuf顺序写下去的,否则atop无法识别数据。 good case : ... rr,scompbuf,pcompbuf ... rr,scompbuf,pcompbuf ... bad case : ... rr,scompbuf[missing] ... rr,scompbuf,pcompbuf … 例如上面的例子,在写完rr,scompbuf之后,atop发生了crash,再重新启动,就会丢失后面的 pcompbuf,造成了整个record文件的不可用。 在patch中,作者使用writev进行写入数据,要么都写入成功,要么都写入不成功,用来防止这种case发生。 4,IPC造成的虚拟机性能抖动 IPC,instructions per cycle。可以用来衡量CPU运行的效率。通常是通过perf采集的数据。 提到perf,就要说明一下它的工作原理:intel的CPU上集成了PMU,用来采集硬件的信息。可以收集的硬件信息很多,可以通过perf list | grep Hardware来看。但是硬件的寄存器有数量限制,所以需要通过wrmsr指令告诉CPU收集哪些具体的事件,再通过rdpmc指令来读取对应的数据。 在虚拟化场景下,在虚拟机中使用PMU又复杂了一下,在虚拟机中执行wrmsr和rdpmc的时候,都需要虚拟机从none-root模式退出,影响了虚拟机的性能。 在patch中,作者让atop支持perfevents的配置,支持三种模式:enable模式,启用perf收集IPC。disable模式,禁用perf收集IPC。auto模式,在启动的时候,atop自动检查是否在虚拟机中运行,如果在虚拟机中,禁用;在物理级中,启用。默认是auto模式。 5,减小record文件 如果是大规格的服务器,40CPU,甚至到96CPU,通常运行大量的docker,里面运行了很多的task。其中很多task占用资源很少,但是依然会占用atop的record文件。 在patch中,支持了配置参数recordcputop & recordmemtop。用来配置收集cpu和内存的topN。其他的task可以忽略。作者测试线上的服务器36CPU, about 500 processes的场景,大约节省了40%的磁盘空间。 6,加速读record 一般在ganglia上看到系统抖动,例如下午三点十分,在对应的服务器上执行: atop -r / var/log/atop/atop_xxxx -b 15:10 如前文所述,因为rawrecord的原因,则会从头读到尾,直到匹配到对应的时间。对于log盘的使用,尤其是虚拟化场景,会限制IOPS。这

02

[Linux] 进程间通信

1.管道(Pipe)及有名管道(namedpipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信 2.信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数) 3.消息队列:消息队列是消息的链接表,包括Posix消息队列systemV消息队列.有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息.消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点. 共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式.是针对其他通信机制运行效率较低而设计的.往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥. 4.信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。 5.套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信.起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和SystemV的变种都支持套接字. PHP版本实现:https://www.jianshu.com/p/08bcf724196b

02
领券