R语言在数据处理方面很是强大,然而也面临着很多的局限性。比如图像的分析处理,大数据的运算效率问题。今天我们介绍R语言和高效语言结合的一种方法:
R是现今最受欢迎的数据分析和可视化平台之一。它是自由的开源软件,并同时提供Windows、Mac OS X和Linux系统的版本。在接下来的时间,我将把掌握、精通这个软件所需的技能学习过程以系列文章的形式发表,记录我的学习过程,供大家参考,一起有效地使用它分析自己的数据。工欲善其事必先利其器,学习R语言数据分析,第一步自然是R安转。R可以在CRAN上免费下载,安装过程可以参考我前面的视频教程
我们知道R语言在作图统计方面很是实用,但是在其他游戏开发、网页制作、人工智能等很多方面相对于python是很局限。今天我们来以weblogo为例展示如何在R语言中调用python。
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。简单来说,R是一门统计计算语言,是一套开源的数据分析解决方案。
首先要下载所需要的示例数据,下载地址:https://storage.googleapis.com/linnarsson-lab-www-blobs/blobs/cortex/expression_mRNA_17-Aug-2014.txt
当下人工智能可谓火热,很多行业在陆续接入相关的功能以及服务。可是大家想不想在R语言中实践下呢? 想不想我都要讲一下,供想实践的参考吧。
本期R语言教程,暂定分为两大部分:第一部分为“R语言快速入门和数据处理”,第二部分为“R语言可视化及绘图”。
R:为什么选择我?而不是其他高级语言,比如Python,Java,C,C++....那么多编程语言?
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用。整理一下目前我看到的R语言的材料:
Python作为多线程的编程语言在并行方面相对于R语言有很大的优势,然而作为占据统计分析一席之地的R语言自然不能没有并行计算的助力。那么我们来看下在R语言中有哪些并行的包:隐式并行:OpenBLAS,Intel MKL,NVIDIA cuBLAS等;显性并行:parallel(主打lapply应用)、foreach(主打for循环)、SupR、还有利用GPU的办法(gpuR)。所谓显式并行也就是基于并行的编程语言编译的程序;隐式并行是基于串行程序编译的并行计算。当然,在R语言核心功能中也是带有了相关的并行的计算基础包parallel。今天就给大家介绍下这个基础并行包的具体应用。
今天给大家介绍一个在R语言中实现了可视化的操作界面的包rattle。此包主要用来实现数据的挖掘的相关功能。首先我们看下包的安装:
我们知道,R语言学习,80%的时间都是在清洗数据,而选择合适的数据进行分析和处理也至关重要,如何选择合适的列进行分析,你知道几种方法?
读书会是一种在于拓展视野、宏观思维、知识交流、提升生活的活动。PPV课R语言读书会以“学习、分享、进步”为宗旨,通过成员协作完成R语言专业书籍的精读和分享,达到学习和研究R语言的目的。读书会由辅导老师或者读书会成员推荐书籍,经过讨论确定要读的书,每个月读一本书且要精读,大家一起分享。 第七章 基本统计 本章概要 1 描述统计 2 频次和相依表 3 相关系数和协方差 4 t-检验 5 非参数统计 本章所介绍内容概括如下。 一旦数据合理组织后,首先,基于数据可视化探索数据,接下来,我们要探索某个变量的分布
R是统计领域广泛使用的诞生于1980年左右的S语言的一个分支。可以认为R是S语言的一种实现。而S语言是由AT&T贝尔实验室开发的一种用来进行数据探索、统计分析和作图的解释型语言。最初S语言的实现版本主要是S-PLUS。S-PLUS是一个商业软件,它基于S语言,并由MathSoft公司的统计科学部进一步完善。后来新西兰奥克兰大学的Robert Gentleman和Ross Ihaka及其他志愿人员开发了一个R系统。由“R开发核心团队”负责开发。R可以看作贝尔实验室(AT&T BellLaboratories)的RickBecker,JohnChambers和AllanWilks开发的S语言的一种实现。当然,S语言也是S-Plus的基础。所以,两者在程序语法上可以说是几乎一样的,可能只是在函数方面有细微差别,程序十分容易地就能移植到一程序中,而很多一的程序只要稍加修改也能运用于R。
恰好看到了无法在线下载安装GitHub包?其实答案就隐藏在报错里面,正好之前也遇到了相似的报错,然后就整理一下笔记分享给大家叭!
话不多说,上网址: https://www.r-graph-gallery.com/ r-garp-gallery收入了大量利用R语言绘制的图形,这些图形包含了很多方面,通过这个网站,我们可以方便直观观察到R语言所能做的一些图形。
记录一下使用Python进行的单变量回归分析的操作流程。另外推荐一个sklearn机器学习的哔哩哔哩视频(文末阅读原文,进行观看)。
Python 和 r语言这对黄金搭档,在数据获取,分析和可视化展示方面,各具特色,相互配合,当之无愧成为数据分析领域的两把利剑。该项目分为两个模块: 1,数据准备阶段 采用python网络爬虫,实现所需数据的抓取; 2,数据处理和数据可视化,采用r语言作为分析工具并作可视化展示。 第一,数据准备模块 数据来源选用笔者所在学校的内网(校内俗称OB),采用保存cookie模拟登录,以板块为单位,进行论坛帖子的抓取,并且根据发贴人的连接,再深入到发贴人的主页进行发贴人个人公开信息的抓取,最后以每一条帖子作为
1.transition_states(states, transition_length = 1, state_length = 1,wrap = TRUE) 生成渐变的动画。其中主要参数:states指的是进行转化的各组数据;state_length指的是每个动画暂停的相对速度;transition_length各组之间转化的相对速度;wrap指的是动画最后是否循环回去。
大家好,我是邓飞,数据分析离不开Linux系统,所以,如何在Linux系统中安装R语言,可以有效的避免入门数据分析,劝退力量很大。如果还有没有劝退,那就在Linux系统中安装R语言包……
当大家热火朝天的使用着Python在构建深度学习模型的时候。TensorFlow官网悄悄的为R语言做了R包-tensorflow。
https://www.zhihu.com/question/19611094 作者:艾华丰 链接:https://www.zhihu.com/question/19611094/answer/15234451 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 R,不仅仅是一种语言本文 原载于《程序员》杂志2010年第8期,因篇幅所限,有所删减,这里刊登的是全文。简介:R是什么 转帖:来自《程序员》上的一篇文章,希望对大家有帮助工欲善其事,必先利其器,作为一个战斗在I
数据分析我们一般希望是从fastq的测序数据文件开始,但是因为并不是常规肿瘤外显子,所以使用agilent的v6不管用,很多流程都需要其panel对应的个性化的bed文件。但是找那些公司索取的时候,居然说是保密的???
当年学习Perl语言时,看小骆驼,上面有个CPAN的东西,说是上面有很多包,但我的技术仅仅入门,包是一次也没有用上。但是R语言不一样,没有R包寸步难行,虽然用R的base包可以把程序写得像bash一样冗长无味,但我还是习惯用tidyverse系列,习惯了,毕竟R包是另一种语言,tidyverse结构的一致性,让我张口就来,不用查说明文档了……
关于局部敏感哈希算法,之前用R语言实现过,但是由于在R中效能太低,于是放弃用LSH来做相似性检索。学了Python发现很多模块都能实现,而且通过随机投影森林让查询数据更快,觉得可以试试大规模应用在数据
你是否还在为不知道自己专业需要哪些R包而烦忧,接下来我给大家介绍个省心省力的方法:
R语言和plink软件都是常用的软件,随着对软件的熟悉,就不用自己写代码了,直接改代码了,既然改代码,就在一个环境下运行就行了,不想来回切换R和Bash。问题来了:如何在R语言中运行plink软件。
生信技能树-数据挖掘课程笔记 函数与参数 #查看函数使用方法 ?rep() 函数的帮助文档: 函数分为形式参数和实际参数 形式参数由函数作者指定,使用者输入实际参数时可省略实际参数 函数的自定义 #自
毫无疑问,处理数据的首要条件是理解数据从产生,对应到我们这个系列,也就是了解三维基因组的背景知识,如下:
在R语言中可以使用png()等函数生成图片,例如: png(“aa.png”)可以生成图片。
觉得基础作图的 R 代码太啰嗦,不成体系(R基础作图合集)?觉得 ggplot2 还是太复杂了不适合自己(ggplot2合集)?那有没有更简单点的?比如说,最好是躺着就能出图的那种。
这个时候,你无需理会你的服务器的R语言版本或者R包啦,因为你每次都会 conda activate r 激活你自己的R语言环境哦。我们在这个环境里面安装了 bioconductor的 singlecelltk和singlecellsignalr,因为它们本身就会依赖大量的其它R语言包,所以理论上这个时候你的这个 conda activate r 小环境,已经是比较好的可以用来做单细胞转录组数据分析的啦!
R语言是用于统计分析,图形表示和报告的编程语言和软件环境。 R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发。
经常有对比R,Python和Julia之间的讨论,似乎R语言在这三者之中是最为逊色的,实则不可一概而论。
有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 三月底参加了中国人民大学统计学院海峡两岸数据挖掘研讨会,和大家简单聊了聊R语言在京东商城的数据挖掘应用。本来想接着写篇博文说明一下, 一直也没腾出时间,今天补上。 为什么要使用R语言 在互联网企业,在分析端使用闭源的商用软件几乎是不可能的,原因很简单:成本太高,不管是使用,还是研发及维护。 但我个人觉得这可能还不是最主要的原因,对于互联网企业来说,数据虽然获取更容易,但环境更为复杂。开源软件可以根据业务的变化 进行调整,但商
COX回归模型,又称“比例风险回归模型(proportionalhazards model,简称Cox模型)”,是由英国统计学家D.R.Cox(1972)年提出的一种半参数回归模型。该模型以生存结局和生存时间为应变量,可同时分析众多因素对生存期的影响,能分析带有截尾生存时间的资料,且不要求估计资料的生存分布类型。由于上述优良性质,该模型自问世以来,在医学随访研究中得到广泛的应用,是迄今生存分析中应用最多的多因素分析方法 [引自百度百科]。
相关系数的计算大家都不陌生,那么如何让相关系数转变为可视化的结果成为大家比较头疼的事情,今天我们来介绍下R语言中相关系数的可视化实现方法。
大家应该很熟悉windows下的R语言,并且也知道如何安装R包。但是呢,如果对于我们这种Linux小白很好奇那些只有在Linux下才能用的包怎么能让我们在windows下体验下呢。那么,作为神一样的R语言简直无所不能,他们开发了Rtool,这个工具不仅是为创建R包用的,同时也可以让那些以gz结尾的R包可以安装在windows环境下。今天我们就来介绍下R语言与Rtool结合后是如何玩转R包的。
网络模型已经成为抽象复杂系统,是深入了解许多科学领域中观测变量之间的关系模式的流行方法。这些应用程序大多数集中于分析网络的结构。但是,如果不是直接观察网络,而是根据数据进行估算(如:吸烟与癌症之间存在关联),则除了网络结构外,我们还可以分析网络中节点的可预测性。也就是说:网络中的所有其余节点如何预测网络中的给定节点?
R语言的工作空间其实就是你当下R语言的工作环境,它包括任何你已经定义了的对象。当一个R进程结束时,用户可以将当前的工作空间保存下来,在下次启动R时就会自动加载,非常方便省事。R语言是一个交互式界面,上翻和下翻键可以用来查看历史指令。这里我建议大家使用RStudio,因为RStudio提供非常强大的R语言高度可视化操作界面,你可以在RStudio里写R代码,也可以写Python代码,同时可以使用Rmarkdown来写自己的文档。
大家看惯R语言朴素的外表后,可能觉得一些高大上的气息好像和R语言没啥关系。今天我们为大家就展示下R语言在图像的交互中帅气一面。话不多说,进入我们的主题:网页可互动图像的绘制。首先我们还是需要安装一个R包:plotly。此包存在于R语言的CRAN上,所以直接安装就好。其依赖的包包括了shiny在内的大量绘图工具。最后我们还要加载另一个包DT。载入包
看到这个问题的时候,我是不知所云的,因为课堂上只讲过order(x),没有出现order(x,y),不理解其运算逻辑,就不能理解函数的结果。因此我整合了order( )函数从基础到上述问题解决的学习过程,仅供参考!
什么是R语言? R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacO
今天是学习小组的第四天,从linux进入R语言,R语言有少许基础,所以今天得心应手,很快就完成了学习,哈哈哈
作者 CDA 数据分析师 数据科学家被认为是21世纪最性感也是最具发展前景的职业,目前有75%左右的数据科学家使用R语言,有35%左右的数据科学家将R语言作为首选统计分析工具。今天,带大家了解一下这门富有魅力的数据科学语言。 一、R 语言环境 R 是一款为数据分析而设计的语言,其功能集数据操作、数学计算和数据可视化为一体,其特点在于: 1.有效得进行数据处理与存储 2.对数组,矩阵运算处理的支持 3.包含大量专门用于数据分析、统计分析和数据挖掘的实现方法 4.强大的数据可视化能力 二、R 与数据分析 经过
平常在各种R语言群里,总会遇到关于安装R包的问题,例如:搭载在github上的R包,由于网速(外网)原因而无法下载该怎么办?
作者:NSS 翻译:杨金鸿 术语校对:韩海畴 全文校对:林亦霖 本文约3000字,建议阅读7分钟。 本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题。学习者不知道从哪开始,如何进行,选择什么学习资源。虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼。 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言。这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解
很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:199427210,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系
领取专属 10元无门槛券
手把手带您无忧上云