本文为IBM RedBook的Linux Performanceand Tuning Guidelines的1.2节的翻译 原文地址:http://www.redbooks.ibm.com/redpapers/pdfs/redp4285.pdf 原文作者:Eduardo Ciliendo, Takechika Kunimasa, Byron Braswell 1.2 Linux内存架构 为了执行一个进程,Linux内核为请求的进程分配一部分内存区域。该进程使用该内存区域作为其工作区并执行请求的工作。它与你的
swap空间对于操作系统来说比较重要,当我们使用操作系统的时候,如果系统内存不足,常常会将一部分内存数据页进行swap操作,以解决临时的内存困境。swap空间由磁盘提供,对于高并发场景下,swap空间的使用会严重降低系统性能,因为它引入了磁盘IO操作。
通常来看,Redis开发和运维人员更加关注的是Redis本身的一些配置优化,例如AOF和RDB的配置优化、数据结构的配置优化等,但是对于操作系统是否需要针对Redis做一些配置优化不甚了解或者不太关心,然而事实证明一个良好的系统操作配置能够为Redis服务良好运行保驾护航。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。
引言 在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约600m,Linux自身使用大约800m。从表面上,物理内存
Linux top命令用于实时显示 process 的动态,当我们在命令框中敲入top命令然后回车之后,可以看到如下输出:
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了?
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。同时,由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了要分析这个问题,理解JVM和操作系统之间的内存关系非常重要。接下来主要就Linux与JVM之间的内存关系进行一些分析。 一、Li
无论是 windows 系统还是 linux 操作系统,在硬盘上都有一块虚拟内存的空间。 无论你使用的是哪个系统,都存在一个问题,那就是到底虚拟内存的空间需要多大呢?虚拟内存又是什么呢? 本文就来详细介绍一下。
前几天我发了一篇文章:在 4GB 物理内存的机器上,申请 8G 内存会怎么样?,但是当时写的比较匆忙,文章中只考虑关闭 swap 的情况,没有提及开启 swap 的情况,有读者希望我补充这部分内容。
对 Linux 稍有了解的人都知道,Linux 会将物理的随机读取内存(Random Access Memory、RAM)按页分割成 4KB 大小的内存块,而今天要介绍的 Swapping 机制就与内存息息相关,它是操作系统将物理内存页中的内容拷贝到硬盘上交换空间(Swap Space)以释放内存的过程,物理内存和硬盘上的交换分区组成了操作系统上可用的虚拟内存,而这些交换空间都是系统管理员预先配置好的[^1]。
为什么选择Linux?因为Linux能让你掌握你所做的一切! 为什么痛恨Windows?因为Windows让你不知道自己在做什么! 这就是我喜欢Linux的原因。只要我愿意,我可以将底层的系统运行机制看得清清楚楚,可以掌握一切。而Windows尽管界面漂亮,却让你总也猜不透她心里想什么。我不喜欢若即若离的感觉。 如果你一看到这个标题就觉得头疼,或者对Linux的内部技术根本不关心,那么,我劝你一句:别用Linux了。你只是在追赶潮流,并不是真心喜欢它。Linux的确没有Windows好用,可它比Windows“结实”。如果你对Linux的稳定性感兴趣,特别是想把Linux作为网站服务器的话,那就请看看下文吧! Swap,即交换区,除了安装Linux的时候,有多少人关心过它呢?其实,Swap的调整对Linux服务器,特别是Web服务器的性能至关重要。通过调整Swap,有时可以越过系统性能瓶颈,节省系统升级费用。 本文内容包括: Swap基本原理 突破128M Swap限制 Swap配置对性能的影响 Swap性能监视 有关Swap操作的系统命令 Swap基本原理 Swap的原理是一个较复杂的问题,需要大量的篇幅来说明。在这里只作简单的介绍,在以后的文章中将和大家详细讨论Swap实现的细节。 众所周知,现代操作系统都实现了“虚拟内存”这一技术,不但在功能上突破了物理内存的限制,使程序可以操纵大于实际物理内存的空间,更重要的是,“虚拟内存”是隔离每个进程的安全保护网,使每个进程都不受其它程序的干扰。 Swap空间的作用可简单描述为:当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用。那些被释放的空间可能来自一些很长时间没有什么操作的程序,这些被释放的空间被临时保存到Swap空间中,等到那些程序要运行时,再从Swap中恢复保存的数据到内存中。这样,系统总是在物理内存不够时,才进行Swap交换。 计算机用户会经常遇这种现象。例如,在使用Windows系统时,可以同时运行多个程序,当你切换到一个很长时间没有理会的程序时,会听到硬盘“哗哗”直响。这是因为这个程序的内存被那些频繁运行的程序给“偷走”了,放到了Swap区中。因此,一旦此程序被放置到前端,它就会从Swap区取回自己的数据,将其放进内存,然后接着运行。 需要说明一点,并不是所有从物理内存中交换出来的数据都会被放到Swap中(如果这样的话,Swap就会不堪重负),有相当一部分数据被直接交换到文件系统。例如,有的程序会打开一些文件,对文件进行读写(其实每个程序都至少要打开一个文件,那就是运行程序本身),当需要将这些程序的内存空间交换出去时,就没有必要将文件部分的数据放到Swap空间中了,而可以直接将其放到文件里去。如果是读文件操作,那么内存数据被直接释放,不需要交换出来,因为下次需要时,可直接从文件系统恢复;如果是写文件,只需要将变化的数据保存到文件中,以便恢复。但是那些用malloc和new函数生成的对象的数据则不同,它们需要Swap空间,因为它们在文件系统中没有相应的“储备”文件,因此被称作“匿名”(Anonymous)内存数据。这类数据还包括堆栈中的一些状态和变量数据等。所以说,Swap空间是“匿名”数据的交换空间。 突破128M Swap限制 经常看到有些Linux(国内汉化版)安装手册上有这样的说明:Swap空间不能超过128M。为什么会有这种说法?在说明“128M”这个数字的来历之前,先给问题一个回答:现在根本不存在128M的限制!现在的限制是2G! Swap空间是分页的,每一页的大小和内存页的大小一样,方便Swap空间和内存之间的数据交换。旧版本的Linux实现Swap空间时,用Swap空间的第一页作为所有Swap空间页的一个“位映射”(Bit map)。这就是说第一页的每一位,都对应着一页Swap空间。如果这一位是1,表示此页Swap可用;如果是0,表示此页是坏块,不能使用。这么说来,第一个Swap映射位应该是0,因为,第一页Swap是映射页。另外,最后10个映射位也被占用,用来表示Swap的版本(原来的版本是Swap_space ,现在的版本是swapspace2)。那么,如果说一页的大小为s,这种Swap的实现方法共能管理“8 * ( s - 10 ) - 1”个Swap页。对于i386系统来说s=4096,则空间大小共为133890048,如果认为1 MB=2^20 Byte的话,大小正好为128M。 之所以这样来实现Swap空间的管理,是要防止Swap空间中有坏块。如果系统检查到Swap中有坏块,则在相应的位映射上标记上0,表示此页不可用。这样在使用Swap时,不至于用到坏块,而使系统产生错误。
究其原因,监控系统计算的可用内存算法有偏差,他只关注了计算机的“实际”内存,忽略了计算机的虚拟内存。
在高并发下,Java程序的GC问题属于很典型的一类问题,带来的影响往往会被进一步放大。不管是「GC频率过快」还是「GC耗时太长」,由于GC期间都存在Stop The World问题,因此很容易导致服务超时,引发性能问题。
嵌入式Linux中文站消息,Linux系统的Swap分区,即交换区,Swap空间的作用可简单描述为:当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用。那些被释放的空间可能来自一些很长时间没有什么操作的程序,这些被释放的空间被临时保存到Swap空间中,等到那些程序要运行时,再从Swap中恢复保存的数据到内存中。这样,系统总是在物理内存不够时,才进行Swap交换。其实,Swap的调整对Linux服务器,特别是Web服务器的性能至关重要。通过调整Swap,有时可以越过系统性能瓶颈,节省系统升级费用。
这篇文章其实之前发过,但是最近有位读者跟我反馈,我文章中的实验在 64 位操作系统、2 G 物理内存的场景,申请 8G 内存是没问题的,而他也是这个环境,为什么他就无法申请成功呢?
1.计算延迟时间: 使用–latency参数 以下参数表示平均超时时间0.03ms。 redis-cli --latency -h 127.0.0.1 -p 6800 min: 0, max: 4, avg: 0.03 (12235 samples) 注意:由于使用的是本机的回环地址,所以这样其实忽略了带宽上的延迟 使用redis内部的延迟检测子系统测试:见上一篇文章中“启用延迟监控系统“部分。 2.延迟标准: 使用–intrinsic-latency参数 需要运行在redis serv
内存 是操作系统非常重要的资源,操作系统要运行一个程序,必须先把程序代码段的指令和数据段的变量从硬盘加载到内存中,然后才能被运行。如下图所示:
JVM本质就是一个进程,因此其内存空间(也称之为运行时数据区,注意与JMM的区别)也有进程的一般特点。深入浅出 Java 中 JVM 内存管理,这篇参考下。
在我们日常工作中,可能会发现free的值(空闲)越来越低,我们会直观的认为内存耗尽,到达瓶颈了,其实,这只是Linux的为了提高文件读取的性能的内存使用机制罢了。不同于Windows,windows程序执行完后,会马上释放掉内存,把Memory降下来。而对于Linux,如果你的服务器内存还有足够多的空间的话,Linux会把程序运行的数据缓存起来,加入到Cache中,所以内存会不断增加,直到一定的限度为止.当超过这限度后,内核必须将脏页写回磁盘,以便释放内存。也就是说,当空闲内存低于一个特定的阈值时,内核的守护进程就会进行内存块回收,那我们如何判断内存达到瓶颈呢?
一直在忙,之前一直怀疑机器中马,kswapd0这个进程4核心CPU24小时跑满单核心,简单排查无果,看了
Linux内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。Linux的空间又分为内核空间和用户空间,在32位中,内核空间占1G,用户空间占3G;而在64位中,内核空间和用户空间各占128T。如图3-24所示。
本文讨论的 swap基于Linux4.4内核代码 。Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑。
不允许容器消耗宿主机太多的内存是非常重要的。在 Linux 主机上,如果内核检测到没有足够的内存来执行重要的系统功能,它会抛出 OOME 或 Out of Memory 异常,并开始终止进程以释放内存。任何进程都会被杀死,包括 Docker 和其他重要的应用程序。如果杀错进程,可能导致整个系统瘫痪。
Linux的swap相关部分代码从2.6早期版本到现在的4.6版本在细节之处已经有不少变化。本文讨论的swap基于Linux 4.4内核代码。Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑。希望本文能让读者了解Linux对swap的使用大概是什么样子。阅读完本文,应该可以帮你解决以下问题:
毋庸置疑,虚拟内存是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
%us: 表示用户空间程序的cpu使用效率 %sy:表示系统空间程序的cpu使用效率 %ni: 表示用户空间通过nice调度过的程序的cpu使用效率 %id: 空闲cpu %wa:cpu运行时等待io的时间 %hi: cpu运行过程中硬中断的数量 %si: cpu处理软中断的数量 %st: 被虚拟机偷走的cpu
我们可以在文章的开始就列出一个列表,列出可能影响Linux操作系统性能的一些调优参数,但这样做其实并没有什么价值。因为性能调优是一个非常困难的任务,它要求对硬件、操作系统、和应用都有着相当深入的了解。如果性能调优非常简单的话,那些我们要列出的调优参数早就写入硬件的微码或者操作系统中了,我们就没有必要再继续读这篇文章了。正如下图所示,服务器的性能受到很多因素的影响。
作者简介:许庆伟,Linux Kernel Security Researcher & Performance Developer 众所周知,Linux内核和CPU处理器负责将虚拟内存映射到物理内存。为了提高效率,在一个称为页的内存组中创建一个内存映射,其中每个页的大小根据处理器的实际情况而来。尽管大多数处理器也支持更大的页,但默认通常是4 KB,。内核可以从页空闲列表中为物理内存页的申请提供分配,并且为了提高效率,为每个DRAM组和CPU均设计了维护这些请求的方案。内核程序可以通过分配器(比如slab分配
毋庸置疑,虚拟内存绝对是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
作为一个计算机底层小白,在了解一个知识点的时候时常需要恶补很多基础知识。 本文记录在了解LMDB过程中接触的知识点。
爱可生南区交付服务部团队 DBA,负责客户 MySQL 的故障处理以及公司数据库集群管理平台 DMP 的日常运维。
我们知道使用Linux交换空间而不是 RAM(内存)会严重降低性能。那么,有人可能会问,既然我有足够多的可用内存,删除交换空间不是更好吗?简短的回答是不会。启用交换空间会带来性能优势,即使你有足够多的内存。 即使安装了足够多的服务器内存,你也会经常发现在长时间正常运行后会使用交换空间。请参阅以下来自具有大约一个月正常运行时间的实时聊天服务器的示例: total used free shared buff/cache available
内核使用cgroup对进程进行分组,并限制进程资源和对进程进行跟踪。内核通过名为cgroupfs类型的虚拟文件系统来提供cgroup功能接口。cgroup有如下2个概念:
Linux 将物理内存分为内存段,叫做页面。交换是指内存页面被复制到预先设定好的硬盘空间(叫做交换空间)的过程,目的是释放对于页面的内存。物理内存和交换空间的总大小是可用的虚拟内存的总量。
之前文章《Linux服务器性能评估与优化(一)》太长,阅读不方便,因此拆分成系列博文:
前不久组内又有一次我比较期待的分享:“Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题。
虚拟机技术可以使得一个只有1g物理内存的机器可以运行总共需要4g内存的任务,主要方法是通过虚拟内存和物理内存映射来实现的,当物理内存不够用的时候,可以通过swap内存(存在于磁盘)和物理内存的交换来释放刚交换的物理内存,使其可以重新分配,当需要使用以前换出的内存时,在进行换入操作。
Linux下的top命令我相信大家都用过,自从我接触Linux以来就一直用top查看进程的CPU和MEM排行榜。但是top命令的其他输出结果我都没有了解,这些指标都代表什么呢,什么情况下需要关注呢?以及top命令输出结果的来源数据是什么呢,又是怎么一个计算原理呢?
前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。
终于可以进入Linux kernel内存管理的世界了,但是从哪里入手是一个问题,当面对一个复杂系统的时候,有时候不知道怎么开始。遵守“一切以人为本”的原则,我最终选择先从从userspace的视角来看内核的内存管理。最开始的系列文章选择了vm运行参数这个主题。执行ls /proc/sys/vm的命令,你可以看到所有的vm运行参数,本文选择了overcommit相关参数来介绍。
内存问题,脑瓜疼脑瓜疼。脑瓜疼的意思,就是脑袋运算空间太小,撑的疼。本篇是《荒岛余生》系列第三篇,让人脑瓜疼的内存篇。其余参见:
来源 | https://zhenbianshu.github.io/ 前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。 之前了解一些操作系统的概念,主要是毕业后对自己大学四年的荒废比较懊恼,觉得自己有些对不起计算机专业出身,于是在工作之余抽出时间看了哈工大在网易云课堂的操作系统公开课,自己也读了一本讲操作系统比较浅的书 《Linux内核设计与实现》,而且去年自己用 C
大概就是,进程写文件(使用缓冲 IO)过程中,写一半的时候,进程发生了崩溃,会丢失数据吗?
负载均衡(uptime) load average: 0.00, 0.00, 0.00
前言: 一个进程最大能使用多少虚拟内存,能控制的地方还是比想象的多一点。 尤其是IaaS上,一个qemu进程能使用多少虚拟内存,就是对应着虚拟机的物理内存的最大限制。 分析: 1,limit 在s
来看一段org.elasticsearch.bootstrap.Bootstrap#setup中的代码:
领取专属 10元无门槛券
手把手带您无忧上云