Linux内核每隔固定周期都会发生时钟中断, 而HZ代表系统在1s中发生时钟中断的次数。如果HZ=1000,则系统在1s之内会发生1000次时钟中断。
最近在重新编译ijkplayer,并且希望能够打印出来各个阶段的时间,以便对于ijkplayer进一步调优
Linux下提供了丰富的api以供开发者们处理和时间相关的问题。然而这些接口看似各自为政实则有有着千丝万缕的联系,在学习和时间中引发了各种各样的混乱。因此时间处理成为了许多Linux开发者的梦魇,遇到时间处理往往避之不及。不过只要你稍微花费一点点精力,学会在Linux上优雅的处理时间和日期也并不是什么难事。
一、时间类型。Linux下常用的时间类型有4个:time_t,struct timeb, struct timeval,struct timespec,clock_t, struct tm. (1) time_t是一个长整型,一般用来表示用1970年以来的秒数. 该类型定义在<sys/time.h>中. 一般通过 time_t time = time(NULL); 获取. (2) struct timeb结构: 主要有两个成员, 一个是秒, 另一个是毫秒, 精确度为毫秒. 1 struct timeb 2
这个系列的博客贴的都是我大二的时候学习Linux系统高级编程时的一些实验程序,都挺简单的。贴出来纯粹是聊胜于无。
在Linux内核中,为了兼容原有的代码,或者符合某种规范,并且还要满足当前精度日益提高的要求,实现了多种与时间相关但用于不同目的的数据结构:
在上一篇文章中,分享了一个跨平台的头文件是长成什么样子的,这个头文件对于 windows 平台下更有意义一些,因为要处理库函数的导入和导出声明(dllexport、dllimport)。
一、kill, raise, killpg 函数 int kill(pid_t pid, int sig); int raise(int sig); int killpg(int pgrp,
内核定时器是内核用来控制在未来某个时间点(基于jiffies(节拍总数))调度执行某个函数的一种机制,相关函数位于 <linux/timer.h> 和 kernel/timer.c 文件中。
Redis 服务器通过 socket 实现与客户端(或其他redis服务器)的交互,文件事件就是服务器对 socket 操作的抽象。 Redis 服务器,通过监听这些 socket 产生的文件事件并处理这些事件,实现对客户端调用的响应。
在之前的文章里我们讲过,libevent最后处理都是在event_base_loop调用了相应的dispatch函数,定时器也是在dispatch函数中处理的。
在Linux中,要发送一个信号相当容易。程序员需要知道两个信息:要发送哪个信号,将这个信号发送给哪个进程。可以用 man 7 signal 找到一个可以利用的信号的列表。用户可以只将信号发送给用户自己的进程,也可以以root身份运行从而将信号发送给任意一进程。
《Linux 应用程序开发班》 / 第 8 天 -NTP 网络协议实现 /培训视频 /NTP网络协议实现 .avi 。
简单的说就是别人本来是执行libA.so里面的函数的,结果现在被偷偷换成了执行你的libB.so里面的代码,是一种替换。
“RTC”的英文全称是Real-Time Clock,翻译过来是实时时钟芯片。实时时钟芯片是日常生活中应用最为广泛的电子器件之一,它为人们或者电子系统提供精确的实时时间。实时时钟芯片通过引脚对外提供时间读写接口,通常内部带有电池,保证在外部系统关电时,内部电路正常工作,时间正常运行。不同的时钟芯片内部机制不一样,时间数据存储格式、读写操作方式也不一样,Linux系统和驱动封装了不同时钟芯片的操作细节,为应用程序提供了统一的时间操作接口。
unix 通过接口 time 将 Epoch 作为整数返回,自然的包含了日期和时间两部分:
nginx采用多进程模型,含一个master进程和多个worker进程,worker进程数目可配置,一般与机器CPU核心数目一致,master进程主要职责是:接收外界信号,如star,stop,restart,监控worker进程状态。worker进程主要职责:负责处理客户端请求。
该文章讲述了在Linux系统中,通过调用timeout函数进行网络连接时,如何实现超时控制。具体来说,介绍了timeout函数的定义、使用方法和注意事项,以及如何在代码中调用timeout函数实现网络连接超时控制。此外,还介绍了如何利用setsockopt函数设置SO_RCVTIMEO选项来实现超时控制。
struct timespec64 ns_to_timespec64(const s64 nsec)用于将纳秒转成timespec64格式返回给用户 其源码分析如下: struct timespec64 ns_to_timespec64(const s64 nsec) { struct timespec64 ts; s32 rem; #如果形参nsec为null,则让timespec64的两个成员变量都为零 if (!nsec) return (struct timespec64) {0, 0}
在Linux编程中,一切皆文件,往往是对一个文件进行操作,比如说串口,和传感器打交道,一般情况下就是一来一去,一收一发,但是,如果我有多个传感器,而传感器之间又有关联,我想同时监控一个或者多个以上的文件描述符,要如何去实现这个需求呢?
https://github.com/yaowenxu/Workplace/blob/master/timer/getrusagetimer.c
在进行Linux C/C++编程时,可调用的sleep函数有好多个,那么究竟应当调用哪一个了?下表列出了这几个函数间的异同点,可作为参考:
ping是基于ICMP(Internet Control Message Protocol)协议实现的。而ICMP协议是在IP层实现的。
Linux关于并发网络分为Apache模型(Process per Connection (进程连接) ) 和TPC , 还有select模型,以及poll模型(一般是Epoll模型) Select模型极其作用:这文章讲述的很好,没必要重述已有的东西,就直接给链接 http://blog.csdn.net/turkeyzhou/article/details/8609360 我的理解: 1 /* According to POSIX.1-2001 */ 2 #inc
原文链接:https://www.cnblogs.com/DOMLX/p/9613861.html
什么是input子系统?不管是什么操作系统,都有一个程序是用于管理各种输入设备的,打个比方,生活中使用的电脑键盘、鼠标就是输入设备,小到日常生活中无可避免的智能手机,智能手机上的触摸屏,按键也是输入社备。那么操作系统是怎么管理这些输入设备的呢?这里还是以最常用的操作系统Linux来进行讲解
定量分析是一切优化过程中最重要的过程之一。在性能优化和分析中,我们如何来描述一段代码的执行效率呢?这里,我将这一过程分为2步。 第一步:我们要找到一个客观的、相对稳定的单位,来描述一个程序的运行时间; 第二步:构造合理的、更接近起初情况的测试用例来进行测量。 这样,最终得到的结果,就是对于一段代码执行效率的客观描述。 一、单位确定 首先,我们要确定下来描述单位。通常来说,时间差被广泛地用做描述计算能力的单位。顾名思议,就是在代码前记下一个时间T1,在执行后记下一个时间T2。然后通过计算∆ = T2 - T1
我们在编写网络程序时,通常需要连接其他服务端(如微服务之间的通信),这时就需要通过调用 connect 函数来连接服务端。但我们发现 connect 函数并没有提供超时的设置,而在 Linux 系统中,connect 的默认超时时间为75秒。所以,在连接不上服务端的情况下,我们需要等待75秒,这对我们不能接受的。
今天自己照着书一步步敲了who命令的实现。老外写的有些书就是不错,一步步启发你告诉你怎么思考,怎么根据已有的线索查询联机帮助,怎么一步步最终解决问题。真不错。 下面我就根据书上的思想,来回顾一下这将近2个小时的工作。
其实他说第二点问题的时候我就已经猜到问题所在了,那不就是远程挂载的磁盘非正常的掉了,然后就会造成这个问题。但是他说 ISCSI 这个玩意的时候我不知道是啥,于是查了一下,有兴趣的同学可以看看这是:https://zhuanlan.zhihu.com/p/60986068,看的出来他是一个网络存储,那么就更加坚定我的想法了,开始指挥解决问题。
阻塞操作是指在执行设备操作时,若不能获得资源,则挂起进程直到满足可操作的条件后再进行操作。被挂起的进程进入睡眠状态,被从调度器的运行队列移走,直到等待的条件被满足。而非阻塞操作的进程在不能进行设备操作时,并不挂起,它要么放弃,要么不停地查询,直至可以进行操作为止。
不同于传统的“一个进程处理一个客户端请求”的方式,IO复用可以让一个进程处理多个客户端的请求,更加节省资源。
在 C 语言中可以用 time_t 类型表示时间,time_t 类型时间其实就是所谓的「日历时间」,在 Linux 系统中就是距离 1970-01-01 08:00:00 这个时间点所经过的秒数,通常 time_t 是一个和 long 一样长的整数,但它似乎无法表示 1970 年以前的时间。
(1)libevent源码深度剖析一 序 (2)libevent源码深度剖析二 Reactor模式 (3)libevent源码深度剖析三 libevent基本使用场景和事件流程 (4)libevent源码深度剖析四 libevent源代码文件组织 (5)libevent源码深度剖析五 libevent的核心:事件event (6)libevent源码深度剖析六 初见事件处理框架 (7)libevent源码深度剖析七 事件主循环 (8)libevent源码深度剖析八 集成信号处理 (9)libevent源码深度剖析九 集成定时器事件 (10)libevent源码深度剖析十 支持I/O多路复用技术 (11)libevent源码深度剖析十一 时间管理 (12)libevent源码深度剖析十二 让libevent支持多线程 (13)libevent源码深度剖析十三 libevent信号处理注意点
(1)日历时间。该值是自协调世界时(UTC)1970年1月1日00:00:00这个特定时间以来所经过的秒数累计值。基本数据类型用time_t保存。最后通过转换才能得到我们平时所看到的24小时制或者12小时间制的时间。
HZ定义在<asm/param.h>,在i386平台上,目前采用的HZ值是1000。
一、结论 提出这个问题说明对网络编程的一些基础原理未搞明白,先说下结论: 一个 socket 是否设置为阻塞模式,只会影响到 connect/accept/send/recv 等四个 socket API 函数,不会影响到 select/poll/epoll_wait 函数,后三个函数的超时或者阻塞时间是由其函数自身参数控制的。 二、原理分析 下面详细的解释,为了方便解释,在这之前我们先明确几个基础概念: connfd:创建 socket,主动发起连接的一端(客户端),该端调用 connect 函数主动发起
在上文《socket网络编程(二)—— 实现持续发送》我们提到了多客户端的时候,多台客户端发送数据到服务端的话,只能有一台客户端可以正常发送和接受数据,另外一台完全没有反应,那这个问题怎么解决呢?很多人可能第一反应想到利用多线程技术,线程多的话用线程池来维护。的确,多线程确实可以实现这个效果,但是,可能很多看见这个但是就不怎么开心了,却不知很多科学科技的进步都是这个但是引发的。但是一个多线程编程很麻烦又容易出错,二是如果连接有几千个的话,线程间切换的开销确实是很大。如果能够在一个线程里就实现这个效果的话,那该多好啊!
在一些应用的编写中我们有时候需要用到时间,或者需要一个“锚点”来确定一些数的值。在c/c++中有两个用来确定时间的函数:time/gettimeofday
hash_map可以说是我一直欲求不得的宝了,第一次接触我就想拿下它,奈何,网上这种的:《手把手教你实现hash_map》,zzz,还手把手呢,自制hash_map,我们自己不会?我要的是使用教程啊。。
root@ubuntu:/home/hfl/hflsamb/network# ./http_test_server -p 8000 http_test_server: port 8000, cpu affinity CPU0, content directory /home/hfl/hflsamb/network, rate 19.400000, loop around 0, send_from_memory 0, verbose 0, disable TCP checksum 0 Allocated 4141032-bytes for buffering, # of DESC=24 Accepted Connection from 801ca8c0:51541 Read HTTP Req ( 125 bytes)[ GET //love.mp3 HTTP/1.1 Host: 192.168.28.128:8000 Rate: 19 PlaySpeed.dlna.org: speed=1 User-Agent: STDSOCKET Test App ] TokenFound = [/love.mp3] Stream file = /home/hfl/hflsamb/network//love.mp3 size=577760125939925376 HTTP Response [ HTTP/1.1 200 OK Content-Length: 2464551019266432 Connection: Keep-Alive Accept-Ranges: bytes Connection: close Content-Range: bytes 0--5224570189344358016/1 Server: Linux/2.6.18, UPnP/1.0, my test app ]Content File opened **** Reached EOF *******
CAS 一般采用原子级的read-modify-write原语来实现Lock-Free算法,其中LL和SC是Lock-Free理论研究领域的理想原语,但实现这些原语需要CPU指令的支持,非常遗憾的是目前没有任何CPU直接实现了SC原语。根据此理论,业界在原子操作的基础上提出了著名的CAS(Compare-And-Swap)操作来实现Lock-Free算法,Intel实现了一条类似该操作的指令:cmpxchg8。 CAS原语负责将某处内存地址的值(1个字节)与一个期望值进行比较,如果相等,则将该内存地址处的值
select的本质是采用32个整数的32位,即32*32= 1024来标识,fd值为1-1024。当fd的值超过1024限制时,就必须修改FD_SETSIZE的大小。这个时候就可以标识32*max值范围的fd。
调用connect连接一般的超时时间是75s, 但是在程序中我们一般不希望等这么长时间采取采取动作。 可以在调用connect之前设置套接字非阻塞,然后调用connect,此时connect会立刻返回, 如果连接成功则直接返回0(成功), 如果没有连接成功,也会立即返回并且会设置errno为EINPROCESS,这并不是一个致命错误,仅仅是告知你已经在连接了,你只要判断是它就继续执行后面的逻辑就行了,比如select.通过select设置超时来达到为connect设定超时的目的. 下面的代码显示这个过程。
当休眠后,再次打开preesure sensor的时候,会出现隔一段时候后,APK才会出现数据;(数据有时候会很难出现)
一些相对高性能的单片机会带以太网接口,网口在MCU里算是比较复杂的外设了,因为它涉及到网络协议栈,通常情况下网络协议栈会运行在一个RTOS中,所以对普通单片机开发者来说网口使用起来相对难度较大一些。在Linux下网口是一个经常使用的接口,由于Linux具备成熟完备的网络通信协议栈,底层驱动厂家也都提供好了,所以使用起来相对方便的多。本篇对Linux下网口使用做个简单总结,希望对大家有所帮助。
领取专属 10元无门槛券
手把手带您无忧上云