关于函数“LockWorkStation()”,参见:https://msdn.microsoft.com/en-us/library/windows/desktop/aa376875.aspx
内核中读写内存的方式有很多,典型的读写方式有CR3读写,MDL读写,以及今天要给大家分享的内存拷贝实现读写,拷贝读写的核心是使用MmCopyVirtualMemory这个内核API函数实现,通过调用该函数即可很容易的实现内存的拷贝读写。
首先CR3是什么,CR3是一个寄存器,该寄存器内保存有页目录表物理地址(PDBR地址),其实CR3内部存放的就是页目录表的内存基地址,运用CR3切换可实现对特定进程内存地址的强制读写操作,此类读写属于有痕读写,多数驱动保护都会将这个地址改为无效,此时CR3读写就失效了,当然如果能找到CR3的正确地址,此方式也是靠谱的一种读写机制。
MDL内存读写是最常用的一种读写模式,通常需要附加到指定进程空间内然后调用内存拷贝得到对端内存中的数据,在调用结束后再将其空间释放掉,通过这种方式实现内存读写操作,此种模式的读写操作也是最推荐使用的相比于CR3切换来说,此方式更稳定并不会受寄存器的影响。
在Windows内核中,为了实现高效的数据结构操作,通常会使用链表和结构体相结合的方式进行数据存储和操作。内核提供了一个专门用于链表操作的数据结构LIST_ENTRY,可以用来描述一个链表中的每一个节点。
Windows内核中是无法使用vector容器等数据结构的,当我们需要保存一个结构体数组时,就需要使用内核中提供的专用链表结构LIST_ENTRY通过一些列链表操作函数对结构体进行装入弹出等操作,如下代码是本人总结的内核中使用链表存储多个结构体的通用案例。
让我们继续在《内核读写内存浮点数》的基础之上做一个简单的延申,如何实现多级偏移读写,其实很简单,读写函数无需改变,只是在读写之前提前做好计算工作,以此来得到一个内存偏移值,并通过调用内存写入原函数实现写出数据的目的。
CR3是一种控制寄存器,它是CPU中的一个专用寄存器,用于存储当前进程的页目录表的物理地址。在x86体系结构中,虚拟地址的翻译过程需要借助页表来完成。页表是由页目录表和页表组成的,页目录表存储了页表的物理地址,而页表存储了实际的物理页框地址。因此,页目录表的物理地址是虚拟地址翻译的关键之一。
在内核编程中字符串有两种格式ANSI_STRING与UNICODE_STRING,这两种格式是微软推出的安全版本的字符串结构体,也是微软推荐使用的格式,通常情况下ANSI_STRING代表的类型是char *也就是ANSI多字节模式的字符串,而UNICODE_STRING则代表的是wchar*也就是UNCODE类型的字符,如下文章将介绍这两种字符格式在内核中是如何转换的。
概述 Win32程序的开头都可看到: #include <windows.h> WINDOWS.H是一个最重要的头文件,它包含了其他Windows头文件,这些头文件的某些也包含了其他头文件。这些头文件中最重要的和最基本的是: WINDEF.H 基本数据类型定义。 WINNT.H 支持Unicode的类型定义。 WINBASE.H Kernel(内核)函数。 WINUSER.H 用户界面函数。 WINGDI.H 图形设备接口函数。 这些头文件定义了Windows的所有资料型态、函数调用、资料结构和常数识别字,
SSDT 中文名称为系统服务描述符表,该表的作用是将Ring3应用层与Ring0内核层,两者的API函数连接起来,起到承上启下的作用,SSDT并不仅仅只包含一个庞大的地址索引表,它还包含着一些其它有用的信息,诸如地址索引的基址、服务函数个数等,SSDT 通过修改此表的函数地址可以对常用 Windows 函数进行内核级的Hook,从而实现对一些核心的系统动作进行过滤、监控的目的。
在前面的章节《X86驱动:挂接SSDT内核钩子》我们通过代码的方式直接读取 KeServiceDescriptorTable 这个被导出的表结构从而可以直接读取到SSDT表的基址,而在Win64系统中 KeServiceDescriptorTable 这个表并没有被导出,所以我们必须手动搜索到它的地址。
bool可用于定义函数类型为布尔型,函数里可以有 return true; return false 之类的语句。
在开始学习内核内存读写篇之前,我们先来实现一个简单的内存分配销毁堆的功能,在内核空间内用户依然可以动态的申请与销毁一段可控的堆空间,一般而言内核中提供了ZwAllocateVirtualMemory这个函数用于专门分配虚拟空间,而与之相对应的则是ZwFreeVirtualMemory此函数则用于销毁堆内存,当我们需要分配内核空间时往往需要切换到对端进程栈上再进行操作,接下来LyShark将从API开始介绍如何运用这两个函数实现内存分配与使用,并以此来作为驱动读写篇的入门知识。
在笔者之前的文章《内核特征码搜索函数封装》中我们封装实现了特征码定位功能,本章将继续使用该功能,本次我们需要枚举内核LoadImage映像回调,在Win64环境下我们可以设置一个LoadImage映像加载通告回调,当有新驱动或者DLL被加载时,回调函数就会被调用从而执行我们自己的回调例程,映像回调也存储在数组里,枚举时从数组中读取值之后,需要进行位运算解密得到地址。
在笔者之前的文章《驱动开发:内核特征码搜索函数封装》中我们封装实现了特征码定位功能,本章将继续使用该功能,本次我们需要枚举内核LoadImage映像回调,在Win64环境下我们可以设置一个LoadImage映像加载通告回调,当有新驱动或者DLL被加载时,回调函数就会被调用从而执行我们自己的回调例程,映像回调也存储在数组里,枚举时从数组中读取值之后,需要进行位运算解密得到地址。
1.使用c++的正则表达式替换对应内容 std::string sKey = it->first; std::string sPattern = "(<)(/)?(" + sKey + ")(>)
Author:bakari Date:2012.10.18 这段时间非常有幸能够跟着一个非常牛的学长学习编程,现将每次学到的内容作为整理,方便以后复习,也分享给需要的网友。 这是学长第一次讲,本次讲的内容比较基础和偏理论,是有关于防御性编程的,关于这方面我之前就记录过一篇文章,详细见: https://cloud.tencent.com/developer/article/1017817 主要内容:防御性编程 概念解释:最简单的说法是:函数在执行前对相关参数的检查,使程序更具健壮性。 问
内核枚举进程使用PspCidTable 这个未公开的函数,它能最大的好处是能得到进程的EPROCESS地址,由于是未公开的函数,所以我们需要变相的调用这个函数,通过PsLookupProcessByProcessId函数查到进程的EPROCESS,如果PsLookupProcessByProcessId返回失败,则证明此进程不存在,如果返回成功则把EPROCESS、PID、PPID、进程名等通过DbgPrint打印到屏幕上。
MDL内存读写是一种通过创建MDL结构体来实现跨进程内存读写的方式。在Windows操作系统中,每个进程都有自己独立的虚拟地址空间,不同进程之间的内存空间是隔离的。因此,要在一个进程中读取或写入另一个进程的内存数据,需要先将目标进程的物理内存映射到当前进程的虚拟地址空间中,然后才能进行内存读写操作。
注册表是Windows中的一个重要的数据库,用于存储系统和应用程序的设置信息,注册表是一个巨大的树形结构,无论在应用层还是内核层操作注册表都有独立的API函数可以使用,而在内核中读写注册表则需要使用内核装用API函数,如下将依次介绍并封装一些案例,实现对注册表的创建,删除,更新,查询等操作。
在内核开发中,经常需要进行进程和句柄之间的互相转换。进程通常由一个唯一的进程标识符(PID)来标识,而句柄是指对内核对象的引用。在Windows内核中,EProcess结构表示一个进程,而HANDLE是一个句柄。
在笔者上一篇文章《内核枚举LoadImage映像回调》中LyShark教大家实现了枚举系统回调中的LoadImage通知消息,本章将实现对Registry注册表通知消息的枚举,与LoadImage消息不同Registry消息不需要解密只要找到CallbackListHead消息回调链表头并解析为_CM_NOTIFY_ENTRY结构即可实现枚举。
在笔者上一篇文章《驱动开发:内核枚举LoadImage映像回调》中LyShark教大家实现了枚举系统回调中的LoadImage通知消息,本章将实现对Registry注册表通知消息的枚举,与LoadImage消息不同Registry消息不需要解密只要找到CallbackListHead消息回调链表头并解析为_CM_NOTIFY_ENTRY结构即可实现枚举。
内核中执行代码后需要将结果动态显示给应用层的用户,DeviceIoControl 是直接发送控制代码到指定的设备驱动程序,使相应的移动设备以执行相应的操作的函数,如下代码是一个经典的驱动开发模板框架,在开发经典驱动时会用到的一个通用案例。
内核层与应用层之间的数据交互是必不可少的部分,只有内核中的参数可以传递给用户数据才有意义,一般驱动多数情况下会使用SystemBuf缓冲区进行通信,也可以直接使用网络套接字实现通信,如下将简单介绍通过SystemBuf实现的内核层与应用层通信机制。
在前文《使用CEF(四)— 在QT中集成CEF(1):基本集成》中,我们使用VS+QT的插件搭建了一个基于QT+CEF的项目。时过境迁,笔者目前用的最多的就是CLion+CMake搭建C/C项目,并且CLion提供了对C/C强大的开发环境。此外,也想将CMake搭建QT项目作为一次实践,故由此文。
thisisbefore(self ,func) 替换成thisisafter(func,self).
根本原因是程序使用了标准函数,而在你的机器上,没有这个标准函数对应的动态库实现,如果想要顺利运行则需要到官方网站下载对应版本的动态库安装即可
领取专属 10元无门槛券
手把手带您无忧上云