本文旨在深入探讨Linux操作系统的虚拟内存管理机制。我们将从基本概念开始,逐步深入到内核级别的实现细节。为了达到这个目标,本文将结合理论讨论和实际的代码分析。我们希望通过这种方式,使读者对Linux虚拟内存管理有更深入的理解。
脏牛(Dirty COW,编号:CVE-2016-5195)是2016年10月18日被曝出的存在于Linux内核中的一款0day漏洞。因为此漏洞是在Linux内核的内存子系统在处理写时拷贝(Copy-on-Write)时发生的,而又给Linux内核的使用带来烦恼,所以将其命名为“Dirty COW”。
IPC全名为inter-Process Communication,含义为进程间通信,是指两个进程之间进行数据交换的过程。在Android和Linux中都有各自的IPC机制,这里分别来介绍下。
这本书属于学习Linux内核原理必读推荐书目之一!对Linux内核的设计原理进行了细致的说明,也有具体实现部分的介绍,结合源码能很好的理解Linux内核;
本文是“Linux内核分析”系列文章的第一篇,会以内核的核心功能为出发点,描述Linux内核的整体架构,以及架构之下主要的软件子系统。之后,会介绍Linux内核源文件的目录结构,并和各个软件子系统对应。
本文为IBM RedBook的Linux Performanceand Tuning Guidelines的1.2节的翻译 原文地址:http://www.redbooks.ibm.com/redpapers/pdfs/redp4285.pdf 原文作者:Eduardo Ciliendo, Takechika Kunimasa, Byron Braswell 1.2 Linux内存架构 为了执行一个进程,Linux内核为请求的进程分配一部分内存区域。该进程使用该内存区域作为其工作区并执行请求的工作。它与你的
x86 CPU采用了段页式地址映射模型。进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存。
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括: 以虚拟地址(VA)的形式,为应用程序提供远大于物理内存的虚拟地址空间(Virtual Address Space) 每个进程都有独立的虚拟地址空间,不会相互影响,进而可提供非常好的内存保护(memory protection) 提供内存映射(Memory Mapping)机制,以便把物理内存、I/O空间、Kernel Image、文件等对象映射到相应进
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括:
漏洞编号: CVE-2016-5195 漏洞名称: 脏牛(Dirty COW) 漏洞危害: 高危 影响范围: Linux内核 >=2.6.22(2007年发行)开始就受影响了 漏洞描述: 低权限用户利用该漏洞技术可以在全版本Linux系统上实现本地提权。 Linux内核的内存子系统在处理写时拷贝(Copy-on-Write)时存在条件竞争漏洞,导致可以破坏私有只读内存映射。低权限的本地用户能够利用此漏洞获取其他只读内存映射的写权限,导致可以进一步提权,甚至提升到root级权限。 漏洞验证测试: 测试环境UB
进程调度器是Linux内核中最重要的子系统。其目的是控制对计算机CPU的访问。这不仅包括用户进程的访问,还包括其他内核子系统的访问。
声明:本文翻译自Conceptual Architecture of the Linux Kernel
内存映射mmap是Linux内核的一个重要机制,它和虚拟内存管理以及文件IO都有直接的关系,这篇细说一下mmap的一些要点。
Linux操作系统的启动过程是一个复杂而精密的流程,涉及到多个阶段和组件。本文将对Linux启动流程进行深入探讨,并对比不同发行版之间的一些差异。我们将关注从Bootloader开始一直到用户空间初始化的整个过程。
过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间,实际内存容量小于4G),逻辑空间也只能描述4G的线性地址空间。
随着计算机技术的飞速发展,Linux操作系统作为开源领域的佼佼者,已经深入到了各个应用场景之中。在Linux系统中,内核与用户空间之间的交互是核心功能之一,而设备驱动则是实现这一交互的关键环节。然而,传统的设备驱动开发往往受限于内核空间的限制,无法充分发挥用户空间程序的灵活性和性能优势。为了解决这个问题,Linux内核引入了UIO(Userspace I/O)驱动模型。
导语:掐指一算自己从研究生开始投入到Linux的海洋也有几年的时间,即便如此依然对其各种功能模块一知半解。无数次看了Linux内核的技术文章后一头雾水,为了更系统地更有方法的学Linux,特此记录。 历史 1991年,还在芬兰赫尔辛基大学上学的Linus Torvalds在自己的Intel 386计算机上开发了属于他自己的第一个程序,并利用Internet发布了他开发的源代码,将其命名为Linux,从而创建了Linux操作系统,并在同年公开了Linux的代码,从而开启了一个伟大的时代。在之后的将近30
导语:掐指一算自己从研究生开始投入到Linux的海洋也有几年的时间,即便如此依然对其各种功能模块一知半解。无数次看了Linux内核的技术文章后一头雾水,为了更系统地更有方法的学Linux,特此记录。 历史 1991年,还在芬兰赫尔辛基大学上学的Linus Torvalds在自己的Intel 386计算机上开发了属于他自己的第一个程序,并利用Internet发布了他开发的源代码,将其命名为Linux,从而创建了Linux操作系统,并在同年公开了Linux的代码,从而开启了一个伟大的时代。在之后的将近30年的
对于精通 CURD 的业务同学,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础。
Linux内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。Linux的空间又分为内核空间和用户空间,在32位中,内核空间占1G,用户空间占3G;而在64位中,内核空间和用户空间各占128T。如图3-24所示。
前言: KVM的设备虚拟化,除了前文《PIO技术分析》,还有另外一个核心概念---MMIO。原计划这里分析一下KVM的MMIO虚拟化。考虑到MMIO比PIO复杂很多,涉及更多的概念,作者打算先分析几篇基本的Linux的内存管理概念,再来分析MMIO。 作者大概想了一下,主要由这几篇构成: 1,虚拟内存管理和内存映射。 2,物理内存管理。 3,内存回收。 分析: 1,虚拟内存概念 x86的CPU有两种运行模式---real mode和protected mode。在real mode下,CPU访问的是物理
我们以用户通过网络读取一个本地磁盘上文件为例,在说零拷贝之前,我们先要说说一个普通的IO操作是怎样做的
在Linux内核中,进程管理涉及到许多复杂的数据结构和机制,其中active_mm是与内存管理相关的一个关键概念。理解active_mm需要先了解与之相关的一些基本内核结构和概念。
1)物理地址:CPU地址总线传来的地址,由硬件电路控制其具体含义。物理地址中很大一部分是留给内存条中的内存的,但也常被映射到其他存储器上(如显存、BIOS等)。在程序指令中的虚拟地址经过段映射和页面映射后,就生成了物理地址,这个物理地址被放到CPU的地址线上。
1.mmap函数 所需头文件:#include<sys/mman.h> 函数原型:void* mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset) 参数: 第一个参数void* addr是映射区的首地址,传NULL,让内核去指定,返回值用来指定映射区的首地址。
这个名叫Dirty COW,也就是脏牛的漏洞,存在Linux内核中已经有长达9年的时间,也就说2007年发布的Linux内核版本中就已经存在此漏洞。Linux kernel团队已经对此进行了修复。据说Linus本人也参与了修复。:P 00x1 漏洞编号: CVE-2016-5195 00x2 漏洞危害: 低权限用户利用该漏洞可以在众多Linux系统上实现本地提权 00x3影响范围: Linux kernel >=2.6.22(2007年发行,到今年10月18日才修复) 00x4
Linux内核主要由 进程管理、内存管理、设备驱动、文件系统、网络协议栈 外加一个 系统调用。
在运维的世界里,服务器的稳定运行是生命的灯塔,一旦遭遇异常重启,便是暴风雨来临的预兆。作为一名运维工程师,深知在这场与故障斗争的战役中,武器的锋利至关重要。今天,我要介绍的主角/工具——kdump,正是这样一款能在风雨来临之际,为我们捕获那一闪而过的真相的工具。
研究人员发现,去年发现的脏牛漏洞(CVE-2016–5195)尚未被完全修复。 脏牛漏洞由竞争条件引发——Linux内核内存子系统在处理COW时存在问题。这个漏洞由Phil Oester发现,它会导致攻击者在目标系统内提权。 Linux内核的内存子系统在处理写入时复制(copy-on-write, COW)时产生了竞争条件(race condition)。恶意用户可利用此漏洞,来获取高权限,对只读内存映射进行写访问。 竞争条件,指的是任务执行顺序异常,可导致应用崩溃,或令攻击者有机可乘,进一步执行其他代
内核文档Documentation/arm64/memory.rst描述了ARM64 Linux内核空间的内存映射情况,应该是此方面最权威文档。
mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。实现这样的映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上,即完成了对文件的操作而不必再调用read,write等系统调用函数。相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享
C/C++程序为编译后的二进制文件,运行时载入内存,运行时内存分布由代码段、初始化数据段、未初始化数据段、堆和栈构成,如果程序使用了内存映射文件(比如共享库、共享文件),那么包含映射段。Linux环境程序典型的内存布局如图1-5所示。
随着cpu技术发展,现在大部分移动设备、PC、服务器都已经使用上64bit的CPU,但是关于Linux内核的虚拟内存管理,还停留在历史的用户态与内核态虚拟内存3:1的观念中,导致在解决一些内存问题时存在误解。
内存管理子系统可能是linux内核中最为复杂的一个子系统,其支持的功能需求众多,如页面映射、页面分配、页面回收、页面交换、冷热页面、紧急页面、页面碎片管理、页面缓存、页面统计等,而且对性能也有很高的要求。本文从内存管理硬件架构、地址空间划分和内存管理软件架构三个方面入手,尝试对内存管理的软硬件架构做一些宏观上的分析总结。
作者简介:许庆伟,Linux Kernel Security Researcher & Performance Develope 如今,云原生平台越来越多的使用了基于eBPF的安全探测技术。这项技术通过创建安全的Hook钩子探针来监测内部函数和获取重要数据,从而支持对应用程序的运行时做监测和分析。Tracee是用于Linux的运行时安全和取证的开源项目,它基于eBPF实现,所以在安全监测方面效果更加优化。 在本文中,我们将探索控制eBPF事件的方法,并研究一个使用BPF事件捕获rootkit的案例。Root
为了快速构建项目,使用高性能框架是我的职责,但若不去深究底层的细节会让我失去对技术的热爱。 探究的过程是痛苦并激动的,痛苦在于完全理解甚至要十天半月甚至没有机会去应用,激动在于技术的相同性,新的框架不再是我焦虑。 每一个底层细节的攻克,就越发觉得自己对计算机一无所知,这可能就是对知识的敬畏。
在Linux中,做什么都有相应命令。一般就在bin或者sbin目录下,数量繁多。如果你事先不知道该用哪个命令,很难通过枚举的方式找到。因此,在这样没有统一入口的情况下,就需要你对最基本的命令有所掌握。
即使看了所有的Linux 内核文章,估计也还不是很明白,这时候,还是需要fucking the code.
作者简介:许庆伟,Linux Kernel Security Researcher & Performance Developer 众所周知,Linux内核和CPU处理器负责将虚拟内存映射到物理内存。为了提高效率,在一个称为页的内存组中创建一个内存映射,其中每个页的大小根据处理器的实际情况而来。尽管大多数处理器也支持更大的页,但默认通常是4 KB,。内核可以从页空闲列表中为物理内存页的申请提供分配,并且为了提高效率,为每个DRAM组和CPU均设计了维护这些请求的方案。内核程序可以通过分配器(比如slab分配
原文地址:牛客网论坛最具争议的Linux内核成神笔记,GitHub已下载量已过百万
随着越来越多的企业开始上“云”,开始容器化,云安全问题已经成为企业防护的重中之重。
start_kernel是内核启动阶段的入口,通过单步调试,可以发现它是linux内核执行的第一个init,我们单步进入看看它做了哪些操作:
零拷贝技术指在计算机执行操作时,CPU不需要先将数据从一个内存区域复制到另一个内存区域,从而可以减少上下文切换以及CPU的拷贝时间。它的作用是在数据报从网络设备到用户程序空间传递的过程中,减少数据拷贝次数,减少系统调用,实现CPU的零参与,彻底消除CPU的负载。
mmap/munmap接口是用户空间的最常用的一个系统调用接口,无论是在用户程序中分配内存、读写大文件,链接动态库文件,还是多进程间共享内存,都可以看到mmap/munmap的身影。mmap/munmap函数声明如下:
网上已经有很多关于Linux内核内存管理的分析和介绍了,但是不影响我再写一篇:一方面是作为其他文章的补充,另一方面则是自己学习的记录、总结和沉淀。
一、内存管理架构 二、虚拟地址空间布局架构 三、物理内存体系架构 四、内存结构 五、内存模型 六、虚拟地址和物理地址的转换 七、内存映射原理分析 一、内存管理架构 内存管理子系统架构可以分为:用户空间、内核空间及硬件部分3个层面,具体结构如下所示:1、用户空间:应用程序使用malloc()申请内存资源/free()释放内存资源。2、内核空间:内核总是驻留在内存中,是操作系统的一部分。内核空间为内核保留,不允许应用程序读写该区域的内容或直接调用内核代码定义的函数。3、硬件:处理器包含一个内存管理单元(Memo
端口(port)是接口电路中能被CPU直接访问的寄存器的地址。几乎每一种外设都是通过读写设备上的寄存器来进行的。CPU通过这些地址即端口向接口电路中的寄存器发送命令,读取状态和传送数据。外设寄存器也称为“I/O端口”,通常包括:控制寄存器、状态寄存器和数据寄存器三大类,而且一个外设的寄存器通常被连续地编址。
BootLoader的目标是正确调用内核的执行,由于大部分的BootLoader都依赖于CPU的体系结构。因此大部分的BootLoader都分为两个步骤启动。依赖于CPU体系结构(如设备初始化等)的代码都放在stage1。而stage2一般使用C语言实现,能够实现更加复杂的功能,代码的可移植性也提高。
如今Android应用市场上的双开软件越来越多,譬如平行空间,双开大师,这些双开软件使得用户在同一台手机设备上使用同时登录两个微信账号,同时玩一个游戏的两个账号。这些软件相信大多数人都有所耳闻,甚至每天都在使用,看起来很厉害的样子,它们使用了什么技术呢?应用层虚拟化技术!这种技术也许你没有听过,但是想必大家使用过360安全卫士、花椒相机吧,它们也是基于应用层虚拟化技术的。
领取专属 10元无门槛券
手把手带您无忧上云