首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

linux内核互斥锁实现

Linux 内核中的互斥锁是一种用于保护共享资源,防止多个进程或线程同时访问导致数据不一致或冲突的机制。

基础概念: 互斥锁是一种同步原语,当一个进程或线程获取了互斥锁,其他进程或线程就不能获取该锁,直到拥有锁的进程或线程释放它。

优势:

  • 简单易用:提供了基本的锁定机制,使用相对简单。
  • 保证互斥:有效地确保在同一时间只有一个进程或线程能访问关键区域。

类型:

  • 自旋锁:当锁被占用时,尝试获取锁的进程或线程会一直循环检查锁是否可用,适用于锁被持有的时间短的场景。
  • 信号量:不仅可以用于互斥,还可以用于控制对一组资源的访问数量。

应用场景:

  • 多个进程或线程竞争访问有限资源,如内存、设备驱动等。
  • 保护关键代码段,确保数据的一致性和完整性。

常见问题及原因:

  • 死锁:可能是由于多个进程或线程相互等待对方释放锁,形成循环等待。原因可能是获取锁的顺序不当。
  • 性能问题:频繁的锁竞争可能导致系统性能下降。

解决方法:

  • 避免嵌套锁:尽量减少在一个锁的保护区域内获取另一个锁。
  • 合理设计锁的粒度:太粗可能导致性能下降,太细可能增加复杂性和出错概率。
  • 按固定顺序获取锁:避免循环等待导致的死锁。

示例代码(使用自旋锁):

代码语言:txt
复制
#include <linux/spinlock.h>

spinlock_t my_lock;

void init_lock(void)
{
    spin_lock_init(&my_lock);
}

void critical_section(void)
{
    spin_lock(&my_lock);
    // 访问共享资源
    spin_unlock(&my_lock);
}

示例代码(使用信号量):

代码语言:txt
复制
#include <linux/semaphore.h>

sem_t my_sem;

void init_sem(void)
{
    sema_init(&my_sem, 1);
}

void critical_section(void)
{
    down(&my_sem);
    // 访问共享资源
    up(&my_sem);
}
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Linux线程互斥锁

今天我们学习Linux线程互斥的话题。Linux同步和互斥是Linux线程学习的延伸。但这部分挺有难度的,请大家做好准备。那我们就正式开始了。...互斥锁 首先,我们先认识一些锁的常见接口 // 所有锁的相关操作函数都在这个头文件下 //这些函数如果又返回值,操作成功的话,返回0,失败的话。返回错误码。...锁只规定互斥访问,没有规定谁优先访问。 锁就是让多个线程公平竞争的结果,强者胜出嘛。 关于互斥锁的理解 所有的执行流都可以访问这一把锁,所以锁是一个共享资源。...为了实现互斥锁操作,大多数体系结构都提供了swap或exchange指令,该指令的作用是把寄存器和内存单元的数据相交换,由于只有一条指令,保证了原子性 。...将寄存器内的1归还给锁。然后return返回就可以了。 对互斥锁的简单封装 相信大家对互斥锁都有了充分的了解。接下来,我们就实现一下对互斥锁的简单封装。

9410
  • 自旋锁和互斥锁区别在哪_互斥锁的实现

    这个比喻还算恰当吧,大家也明白为什么要求锁的持有时间尽量短了吧!A B 相当于 cpu 内核,厕所就相当于互斥资源。 从 实现原理上来讲,Mutex属于sleep-waiting类型的锁。...要调整运行级别 因为另一个CPU可能在死循环不干活 自己必须快点执行完 要快点执行完 就必须保证自己的原子性 因此提高权限关闭中断是必须的 其实windows的自旋锁机制还是很简单的了 linux...更复杂 linux提供了更多自旋锁操作方式 尤其是对中断中使用自旋锁的情况 当然一般是不提倡中断中使用自旋锁的 所以,自旋锁一般用用多核的服务器。...其作用是为了解决某项资源的互斥使用。因为自旋锁不会引起调用者睡眠,所以自旋锁的效率远 高于互斥锁。...因此我们要慎重使用自旋锁,自旋锁只有在内核可抢占式或SMP的情况下才真正需要,在单CPU且不可抢占式的内核下,自旋锁的操作为空操作。自旋锁适用于锁使用者保持锁时间比较短的情况下。

    1K30

    liunx内核中的互斥自旋锁和读写自旋锁的实现详解

    今天把这两个锁的内核实现源码重新捋了一遍,基于liunx2,6.0,直接粘注释版: 核心文件,x86下实现的spinlock #ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H...,和互斥自旋锁机构一模一样 #define RWLOCK_MAGIC 0xdeaf1eed #ifdef CONFIG_DEBUG_SPINLOCK #define RWLOCK_MAGIC_INIT...* 在x86上,我们将读写锁实现为32位计数器,高位(符号)为“争用”位。 * * The inline assembly is non-obvious. Think about it....(arch/i386/kernel/semaphore.c)找,否则找不到 //获取读锁或者写锁失败后的helper实现 static inline void _raw_read_lock(rwlock_t...= RWLOCK_MAGIC) BUG(); #endif __build_read_lock(rw, "__read_lock_failed");//在读写锁文件rwlock.h里有相应实现 }

    1.1K30

    Linux内核中的各种锁:信号量互斥锁读写锁原子锁自旋锁内存屏障等

    使用实例如下: #include linux/spinlock.h> // 定义自旋锁 spinlock_t my_lock; void my_function(void) { spin_lock...而互斥锁则不是,前面说互斥锁加锁失败,线程会出让CPU,这个过程其实是由内核来完成线程切换的,因此加锁失败时,1)首先从用户态切换至内核态,内核会把线程的状态从「运行」状态设置为「睡眠」状态,然后把 CPU...但是互斥锁不是,它的目的就是只让一个线程进入临界区,其余线程没拿到锁,就只能阻塞等待。线程互斥的进入临界区,这就是互斥锁名字由来。...读写锁这种就属于高阶锁了,它的实现就可以用自旋锁。 抢占: 抢占必须涉及进程上下文的切换,而中断则是涉及中断上下文的切换。...而且,实际上很多线程同步机制,都在底层有内存屏障作为支撑,比如原子锁和自旋锁都是依赖CPU提供的CAS操作实现。

    1.6K20

    【Linux内核锁】内核锁的那点事

    在Linux设备驱动中,我们必须要解决的一个问题是:多个进程对共享资源的并发访问,并发的访问会导致竞态。 1、并发和竞态 并发(Concurrency):指的是多个执行单元同时、并行的被执行。...解决竞态的途径是:保证对共享资源的互斥访问。 互斥访问:一个执行单元在访问共享资源的时候,其他执行单元被禁止访问。 临界区(Critical Sections):访问共享资源的代码区域成为临界区。...临界区需要以某种互斥机制加以保护。 常见的互斥机制包括:中断屏蔽,原子操作,自旋锁,信号量,互斥体等。...4、总结 由上文可知,为了解决 并发导致的竞态问题 高性能的编译器编译乱序问题 高性能的CPU带来的执行乱序问题 CPU和ARM处理器提供的内存屏障指令等,这也是内核锁存在的意义。

    26120

    go 互斥锁和读写互斥锁

    互斥锁 互斥锁是一种常用的控制共享资源访问的方法,它能够保证同时只有一个goroutine可以访问共享资源。Go语言中使用sync包的Mutex类型来实现互斥锁。...}() } // 等待所有goroutine执行完毕 wg.Wait() // 输出x(10000) fmt.Println(x) } 读写互斥锁...互斥锁是完全互斥的,但是有很多实际的场景下是读多写少的,当并发的去读取一个资源不涉及资源修改的时候是没有必要加锁的,这种场景下使用读写锁是更好的一种选择。...读写锁分为两种:读锁和写锁。...当一个goroutine获取读锁之后,其他的goroutine如果是获取读锁会继续获得锁,如果是获取写锁就会等待;当一个goroutine获取写锁之后,其他的goroutine无论是获取读锁还是写锁都会等待

    23030

    利用LockSupport实现互斥锁和共享锁

    LockSupport是一个非常底层的API,我们利用其可以做很多事情,本文将利用LockSupport实现互斥锁和共享锁。...Lock 在JDK中已经提供了很多种锁的实现,原生的synchronized(优先推荐使用),juc中的ReentrantLock等,本文不纠结synchronized和ReentrantLock的实现...,本文只从Lock的语义出发实现两种锁。...)等的支持,并且在有线程释放锁之后需要唤起阻塞线程进行锁的竞争,所以需要维护等待锁的线程队列 Lock需要维护当前锁的状态(是否可以被获取等) 互斥锁 public class MutexLock implements...thread don't own this lock."); } state.getAndIncrement(); } } 总结 以上利用了LockSupport来实现了互斥锁和共享锁

    1K20

    Golang中互斥锁和读写互斥锁

    互斥锁         在Golang中,互斥锁(Mutex)是一种基本的同步原语,用于实现对共享资源的互斥访问。...互斥锁的主要方法包括两个,分别是 Lock 和 Unlock。...在函数执行前通过mutex.Lock()获取互斥锁,在函数执行结束后通过mutex.Unlock()释放互斥锁。...读写互斥锁         Go语言中的读写互斥锁(RWMutex)是一种特殊类型的互斥锁,它允许多个协程同时读取某个共享资源,但在写入时必须互斥,只能有一个协程进行写操作。...相比互斥锁,读写互斥锁在高并发读的场景下可以提高并发性能,但在高并发写的场景下仍然存在性能瓶颈。         读写互斥锁有两个方法:RLock()和RUnlock()。

    31630

    LiteOS内核教程05 | 互斥锁(共享资源保护)

    LiteOS的互斥锁 1.1. 互斥锁 在多任务环境下,往往存在多个任务竞争同一共享资源的应用场景,互斥锁可被用于对共享资源的保护从而实现独占式访问。...互斥锁(mutex)又称互斥型信号量,是一种特殊的二值信号量,用于实现对共享资源的独占式处理。另外,Huawei LiteOS提供的互斥锁通过优先级继承算法,解决了优先级翻转问题。 1.2....当有任务持有时,互斥锁处于闭锁状态,这个任务获得该互斥锁的所有权。当该任务释放它时,该互斥锁被开锁,任务失去该互斥锁的所有权。当一个任务持有互斥锁时,其他任务将不能再对该互斥锁进行开锁或持有。...相关的接口定义在osal.c中,基于LiteOS的接口实现在 liteos_imp.c文件中: 接口名 功能描述 osal_mutex_create 创建互斥锁 osal_mutex_del 删除互斥锁...在Demo文件夹右击,新建文件夹osal_kernel_demo用于存放内核的实验文件(如果已有请忽略这一步)。

    1.1K20

    go 安全map 实现, 互斥锁和读写锁

    互斥锁 其中Mutex为互斥锁,Lock()加锁,Unlock()解锁,使用Lock()加锁后,便不能再次对其进行加锁,直到利用Unlock()解锁对其解锁后,才能再次加锁.适用于读写不确定场景,即读写次数没有明显的区别...,并且只允许只有一个读或者写的场景,所以该锁叶叫做全局锁. package main import ( "fmt" "sync" "errors" ) type MyMap struct {...读写锁即是针对于读写操作的互斥锁。...它与普通的互斥锁最大的不同就是,它可以分别针对读操作和写操作进行锁定和解锁操作。读写锁遵循的访问控制规则与互斥锁有所不同。 在读写锁管辖的范围内,它允许任意个读操作的同时进行。...也就是说,读写锁控制下的多个写操作之间都是互斥的,并且写操作与读操作之间也都是互斥的。但是,多个读操作之间却不存在互斥关系。

    4.9K20

    互斥锁-读写锁-条件锁

    一,使用互斥锁 1,初始化互斥量 不能拷贝互斥量变量,但可以拷贝指向互斥量的指针,这样就可以使多个函数或线程共享互斥量来实现同步。上面动态申请的互斥量需要动态的撤销。...二,使用读写锁 通过读写锁,可以对受保护的共享资源进行并发读取和独占写入。读写锁是可以在读取或写入模式下锁定的单一实体。要修改资源,线程必须首先获取互斥写锁。...必须释放所有读锁之后,才允许使用互斥写锁。...初始化和销毁: 同互斥量一样, 在释放读写锁占用的内存之前, 需要先通过pthread_rwlock_destroy对读写锁进行清理工作, 释放由init分配的资源. 2.加锁和解锁 三,条件变量...假如某个线程需要等待系统处于某种状态下才能继续执行,Linux为了解决这种问题引入了条件变量这种线程同步对象,条件变量是用来通知共享数据状态信息的,等待条件变量总是返回锁住的互斥量,条件变量是与互斥量相关

    82410

    嵌入式Linux:线程同步(互斥锁)

    Linux线程的互斥锁(mutex)是用于保护共享资源的同步机制,确保在多线程环境中,多个线程不会同时访问或修改同一个资源,从而避免数据竞争或不一致的问题。...在Linux下,线程互斥锁主要通过POSIX线程库(pthread)来实现,通常的步骤包括: 初始化互斥锁:使用pthread_mutex_init()或直接用静态初始化PTHREAD_MUTEX_INITIALIZER...解锁互斥锁:访问结束后,使用pthread_mutex_unlock()解锁。 销毁互斥锁:使用pthread_mutex_destroy()销毁互斥锁,通常在不再使用该互斥锁时进行。...EBUSY:互斥锁已经被初始化。 ENOMEM:内存不足,无法分配资源。 2、互斥锁加锁与解锁 2.1、互斥锁加锁 pthread_mutex_lock() 用于对互斥锁加锁。...2.2、互斥锁解锁 pthread_mutex_unlock() 用于解锁已经加锁的互斥锁。 如果其他线程正等待此互斥锁,它将被唤醒并获取锁。

    4300

    内核系统调用的实现和互斥机制

    有感于最近在知乎看到了两个问题,分享一下对内核系统调用的实现和互斥机制的认识。...互斥机制 但是因为在多核的情况下,多个CPU上会执行多个线程,如果多个线程同时请求内核访问同一个内核数据结构,那么就会引起竞态情况。所以内核需要实现访问资源的互斥机制。...比如自旋锁,保证多个CPU只有其中一个CPU拿到这个锁,然后操作共享的数据。...,对内存进行互斥访问,下面是i386原子操作的实现。...内核实现的功能虽然没有使用多线程,但是通常底层是多核,上层是使用多进程/多线程的,所以内核为了保证互斥访问共享数据,需要实现一些原子操作和互斥机制。

    74220

    Linux内核28-自旋锁

    如果内核控制路径发现自旋锁空闲,则申请加锁然后执行。相反,如果发现锁已经被其它CPU上的内核控制路径占用,它就会一直自旋,就是在循环查看锁是否已经释放,直到该锁被释放。...自旋锁的自旋过程就是一个忙等待的过程。也就是说,正在等待的内核控制路径正在浪费时间,因为什么也不干。...但是,大部分的内核资源加锁的时间可能仅为毫秒的几分之一,因此,释放CPU使用权再获取可能比一直等待更消耗时间。所以,自旋锁使用的场合就是,内核资源的占用时间一般比较短,且是多核系统的时候。...2 自旋锁结构实现 Linux内核系统中,自旋锁spinlock_t的实现主要使用了raw_spinlock_t结构,这个结构的实现,参考下面的代码: typedef struct raw_spinlock...raw_lock 表示自旋锁的状态,依赖于具体的架构实现。 break_lock 标志着进程正在忙等待锁(仅当内核同时支持SMP和内核抢占时才会出现)。 接下来,我们分析加锁的流程。

    1.4K20
    领券