Q1:F-Stack有中断模式吗,有计划支持吗?在计算密集型的应用中,轮询模式会占用更多的CPU资源? A1:F-Stack暂时只支持轮询模式,后续会支持中断+轮询模式,避免与计算密集型业务抢占CPU及节省能源。 Q2:F-Stack如何实现zerco copy? A2:目前F-Stack尚未做到完全零拷贝。在收包时使用FreeBSD的mbuf ext add可以避免拷贝。在发包时尚存在拷贝,后续会优化为无拷贝,主要的方案是自己实现内存管理,完全使用hugepage。 Q3:F-Stack的运行环境有何
本文是将知乎网友的提问 《如何评价腾讯开源的基于 DPDK 和 BSD 协议栈的网络框架 f-stack?》,将回答讨论内容和我们的一些想法进行了整理。 项目背景 F-Stack 这个项目起始于DNSPod的授权DNS项目,当时是12年,DPDK还未开源的时候,我们就基于DPDK做了授权DNS,做完的时候正好DPDK也开源了,正式上线后10GE单网卡性能达到1100万qps,后面又实现了一个简易的TCP协议栈用于支持TCP DNS。 后来DNSPod合并进入腾讯云,腾讯云有大量业务需要高性能的接入服务,而D
本文介绍了 F-Stack 框架,它是一个基于 FreeBSD 内核的用户态协议栈实现,解决了传统内核协议栈在高性能、可扩展、兼容性、功能完备等方面的问题。F-Stack 提供了丰富的功能,包括零拷贝、无锁队列、内存池、红黑树等,支持多种调度算法,并提供了易用的接口。在性能测试中,F-Stack 的表现优异,最高达到了 2000 万 QPS,并支持多种网络协议,包括 HTTP、TCP、UDP、IPX 等。同时,F-Stack 也提供了丰富的开发文档和示例代码,方便开发者进行二次开发和功能扩展。
本文是一篇翻译,翻译自https://software.intel.com/en-us/blogs/2015/06/12/user-space-networking-fuels-nfv-performance,文章有点老了,15年写的,但是文章总结了一些用户态的协议栈,很有学习参考的意义。 如今,作为一个网络空间的软件开发人员是非常激动人心的,因为工程师的角色随着这个世界的规则在逐渐改变。 过去这 15 年来,人们对高性能网络做了很多努力,网络模型也发生了很多改变,起初,数据包的收发都要推送到内核才能完成
过去几十年互联网呈爆发式的增长,内容的丰富以及层出不穷的DDoS攻击等,对网络性能提出了极大的挑战,也同样促进了网络基础设施的快速发展。运营商的带宽越来越大,CPU/网卡等硬件的性能也会越来越强。但在很长时间内,软件的性能提升落后于硬件的性能提升,并严重限制了应用程序的性能,大部分时间不得不依靠堆机器来应对,造成了大量的资源浪费和成本提高。 随着软件的不断发展,在新世纪的第一个10年时,通过多线程和事件驱动(kqueue/epoll等)解决了C10K的问题。但是在第二个10年却不堪重负,亟需新的解
过去几十年互联网呈爆发式的增长,内容的丰富以及层出不穷的DDoS攻击等,对网络性能提出了极大的挑战,也同样促进了网络基础设施的快速发展。运营商的带宽越来越大,CPU/网卡等硬件的性能也会越来越强。但在很长时间内,软件的性能提升落后于硬件的性能提升,并严重限制了应用程序的性能,大部分时间不得不依靠堆机器来应对,造成了大量的资源浪费和成本提高。
F-Stack是一个全用户态的高性能的网络接入开发包,基于DPDK、FreeBSD协议栈、微线程接口等,适用于各种需要网络接入的业务,用户只需要关注业务逻辑,简单的接入F-Stack即可实现高性能的网
由 DPDK社区和英特尔主办的 DPDK中国技术峰会2017 于6月27日在上海举行,Intel、腾讯云、中兴、美团云、Panabit、太一星辰、UnitedStack、云杉网络等参会并进行了主题分享。 该次峰会在一天里安排了多达16个议题,但即使到晚上峰会结束时整个会场依然座无虚席,属于少见的纯干货技术峰会,未到现场参加可以通过文末链接下载PPT和观看视频回放。 F-Stack在峰会进行了《F-Stack, a full user space network service on
F-Stack是一个全用户态的高性能的网络接入开发包,基于DPDK、FreeBSD协议栈、微线程接口等,适用于各种需要网络接入的业务,用户只需要关注业务逻辑,简单的接入F-Stack即可实现高性能的网络服务器。 F-Stack中使用的FreeBSD协议栈的高性能异步事件通知的API是kqueue,而Linux系统上则是我们熟悉的epoll,大量的Linux网络server都是基于epoll事件通知机制,为降低已有服务器接入F-Stack的修改难度,F-Stack协议栈实现了把
F-Stack是一个全用户态(kernel bypass)的高性能的网络接入开发包,基于DPDK、FreeBSD协议栈、微线程接口等,适用于各种需要网络接入的业务,用户只需要关注业务逻辑,简单的接入F-Stack即可实现高性能的网络服务器。 本文介绍F-Stack的详细架构及如何解决内核协议栈面临的问题。 传统内核协议栈的性能瓶颈 在传统的内核协议栈中,网络包处理存在诸多瓶颈,严重影响网络包的收发性能。性能瓶颈主要包括以下几个方面 局部性失效 - 一个数据包的处理可能跨多个CPU核心、缓存失效、NUM
HTTP 协议因其易用性和普适性得到了大规模的普及,我们说HTTP协议是互联网的基石一点也不为过,当前提供HTTP服务的Server性能要求越来越高,如何提高 HTTP 服务器的性能变得非常重要。近年来网卡性能快速发展,给高性能HTTP服务提供了硬件支持,但是linux 内核却越来越成为高性能网络服务器的瓶颈。 HTTP 的传输层协议为 TCP ,TCP作为面向连接的协议能够提供可靠传输,但是在性能有非常大的短板,尤其在短连接网络业务服务中,受限于PCB表锁竞争等因素,系统内核大并发创建 T
本文介绍了如何使用 F-Stack 实现高性能的 HTTP 服务器,通过实例测试验证了 F-Stack 的性能和优势。
近日,Linux 内核被曝存在TCP “SACK PANIC” 远程拒绝服务漏洞(漏洞编号:CVE-2019-11477,CVE-2019-11478,CVE-2019-11479),攻击者可利用该漏洞远程攻击目标服务器,导致系统崩溃或无法提供服务。
F-Stack基于DPDK,绕过内核的协议栈,移植了FreeBSD协议栈到用户态,在大幅提高性能的同时,常规网络设置分析工具(如sysctl、netstat、ifconfig、route等)都无法直接使用。但是由于在用户态运行了FreeBSD的协议栈,我们可以移植FreeBSD下的这些工具到F-Stack。 移植的关键是这些工具要能与F-Stack进程通信,在之前的文章中,我们介绍了如何使用DPDK rte_ring来进行多进程的通信,tools/ipc目录就是基于rte_ring实现了一个简单的ipc框架
我们曾在公众号里给大家讲过很多有关于Modbus的知识,还培训过Modbus驱动的开发和调试,今天我们给大家推荐一个常用的开源Modbus协议栈libmodbus,这个库是用C语言写的,可以运行在Linux,Mac OS,FreeBSD,QNX, Windows等环境下。在Linux底下做modbus通信的话,我们经常来移植libmodbus,通过命令行操作来编译,可以到官网下载最新版的源码http://libmodbus.org/ 我们曾多次提到要熟悉modbus协议,如果你对modbus协议比较清楚的话
目前F-Stack的配置文件中包含有以下8个部分,下面将分别进行简单的介绍: [dpdk]、[pcap]、[portN]、[vdevN]、[bondN]、[kni]、[freebsd.boot]、[freebsd.sysctl] [DPDK] 设置运行DPDK的相关参数,如果是DPDK也有的参数,则含义和使用方法同DPDK参数。 lcore_mask 16进制位掩码,用于设置进程运行在哪些CPU核心上。如fc表示使用CPU第2-7个核,不使用第0和1核。 建议优先使用物理核,数据尽量不要跨NUMA节点交互,
【漏洞详情】 近日,腾讯云安全中心情报平台监测到 Netflix 信息安全团队研究员Jonathan Looney发现 Linux 以及 FreeBSD 等系统内核上存在严重远程DoS漏洞,攻击者可利用该漏洞构造并发送特定的 SACK 序列请求到目标服务器导致服务器崩溃或拒绝服务。
"鹅厂网事"由深圳市腾讯计算机系统有限公司技术工程事业群网络平台部运营,我们希望与业界各位志同道合的伙伴交流切磋最新的网络、服务器行业动态信息,同时分享腾讯在网络与服务器领域,规划、运营、研发、服务等层面的实战干货,期待与您的共同成长。
packetdrill 是一个跨平台的脚本工具,可以用来测试整个 TCP/UDP/IP 网络栈实现的正确性和性能,从系统调用一直到硬件网络接口,从 IPv4 到 IPv6。
本章节介绍的是一款面向四层网关(如四层负载均衡,L4-LB)的高性能的压测工具dperf。该工具目前已经在github上开源,是一款高性能的压测工具:
随着云计算产业的异军突起,网络技术的不断创新,越来越多的网络设备基础架构逐步向基于通用处理器平台的架构方向融合,从传统的物理网络到虚拟网络,从扁平化的网络结构到基于 SDN 分层的网络结构,无不体现出这种创新与融合。
而TCP/IP协议栈使用大端字节序。应用程序交换格式化数据时,字节序问题就会出现。对于TCP/IP,地址用网络字节序来表示,所以应用程序有时需要在处理器的字节序与网络字节序之间转换它们。
近日,腾讯云安全中心监测到Linux 内核被曝存在TCP “SACK Panic” 远程拒绝服务漏洞(漏洞编号:CVE-2019-11477,CVE-2019-11478,CVE-2019-11479),攻击者可利用该漏洞远程攻击目标服务器,导致系统崩溃或无法提供服务。 为避免您的业务受影响,云鼎实验室建议Linux系统用户及时开展安全自查,如在受影响范围,请您及时进行更新修复,避免被外部攻击者入侵。同时建议云上租户免费开通「安全运营中心」-安全情报,及时获取最新漏洞情报、修复方案及数据泄露情况,感知云上
物联网企业安全公司Forescout和以色列安全研究小组JSOF的安全研究人员最近发现了9个漏洞,这些漏洞影响4个TCP/IP协议栈从而影响了1亿多台用户和企业设备。攻击者可以利用这些漏洞来控制系统。
数据平面开发套件(DPDK [1] ,Data Plane Development Kit)是由6WIND,Intel等多家公司开发,主要基于Linux系统运行,用于快速数据包处理的函数库与驱动集合,可以极大提高数据处理性能和吞吐量,提高数据平面应用程序的工作效率。
很高兴大家回到这次深潜之旅,让我们继续挖掘 NGINX 的潜力。今天我的分享包括四个部分。首先从整体上来看一下 NGINX的协议栈如何进行优化。接着我们将按照 OSI七层网络模型,自上而下依次讨论HTTP协议栈、TLS/SSL协议栈以及TCP/IP协议栈。
我们现在已经搞定了 C10K并发连接问题 ,升级一下,如何支持千万级的并发连接?你可能说,这不可能。你说错了,现在的系统可以支持千万级的并发连接,只不过所使用的那些激进的技术,并不为人所熟悉。
限于某些原因 F-Stack 项目之前是未对 IPv6 进行支持的,随着 IPv6 需求的增多,近期对 IPv6 进行了支持。本文将简单介绍 F-Stack 支持 IPv6 所做的修改,如何使用以及相关注意事项。 F-Stack 如何支持 IPv6 以下所列为 F-Stack 支持 IPv6 所进行的修改,具体改动细节可查看 github 相关 commits。 F-Stack 框架支持 在 Makefile 中定义 IPv6 相关的宏INET6及需要包含编译的文件NETINET6_SRC
有时候我们要控制套接字的行为(如修改缓冲区的大小),这个时候我们就要控制套接字的选项了. 以下资料均从网上收集得到 getsockopt 和 setsockopt 获得套接口选项:
Q1:请问再视频领域,媒体服务器,使用F-Stack是否合适? A1:F-Stack在纯推流的模式上是支持且合适的,如果有转码服务等计算密集型服务,需要等我们支持中断+轮询模式之后更合适。 Q2:请问,安装F-Stack对网卡有没有要求? A2:F-Stack使用了DPDK作为网络模块,网卡要求与DPDK相同,具体支持网卡列表请参考《list of supported NICs》(http://dpdk.org/doc/nics)。 Q3:基于 F-Stack 的分布式文件系统是怎么样的,效率提高的明显
在现代计算环境中,虚拟网络设备在实现灵活的网络配置和隔离方面发挥了至关重要的作用🔧,特别是在容器化和虚拟化技术广泛应用的今天🌐。而Linux网络协议栈则是操作系统处理网络通信的核心💻,它支持广泛的协议和网络服务🌍,确保数据正确地在网络中传输。本文将深入分析虚拟网络设备与Linux网络协议栈的关联,揭示它们如何共同工作以支持复杂的网络需求。
数据包在服务器的处理分接收和发送两个方向,收包方向因为我们自己本身的业务场景涉及收包数据很少,后续另行介绍。 本文主要介绍F-Stack发包方向上当前的零拷贝处理方案、效果和应用场景的选择,发包方向上的数据拷贝目前主要为两个阶段,一是协议栈数据拷贝到DPDK的rte_mbuf中,二是应用层调用socket发送接口时会将数据从应用层拷贝到FreeBSD协议栈,下面将分别进行介绍。 协议栈到DPDK 该过程的零拷贝实现由 @jinhao2 提交的Pull Request #364 合并到F-Stack主线中,相
Netfilter/iptables是Linux内核内置的报文过滤框架,程序可以通过该框架完成报文过滤、地址转换(NAT)以及连接跟踪等功能。
首先,DPDK和内核网络协议栈不是对等的概念。 DPDK只是单纯的从驱动拿数据,然后组织成数据块给人用,跑在用户态。功能相当于linux的设备无关接口层,处于socket之下,驱动之上。只不过linux协议栈的这部分在核心态。 你说的包处理器,很多时候是不用linux内核协议栈的,而是用专用包处理程序,类似于DPDK加上层应用处理。通常会有些硬件加速器,包处理效率更高些。缺点是一旦用不上某些功能,那些加速器就白费了。而纯软件处理就非常灵活,不过代价就是功耗和性能。 纯DPDK性能非常高,intel自己给出的数据是,处理一个包80时钟周期。一个3.6Ghz的单核双线程至强,64字节小包,纯转发能力超过90Mpps,也就是每秒9千万包。 不知你有没有看出来,80周期是一个非常惊人的数字?正常情况下,处理器访问一下ddr3内存都需要200个周期,而包处理程序所需要操作的数据,是从pcie设备送到ddr内存的,然后再由处理器读出来,也就是说,通常至少需要200周期。为啥现在80周期就能完成所有处理?我查了下文档,发现原因是使用了stashing或者叫direct cache access技术,对于PCIe网卡发过来的包,会存在一个特殊字段。x86的pcie控制器看到这个字段后,会把包头自动塞到处理器的缓存,无序处理器来干预。由于包头肯定是会被读取的,这样相当于提前预测,访问的时间大大缩短。 如果加上linux socket协议栈,比如跑个纯http包反弹,那么根据我的测量,会掉到3000-4000周期处理一个包,单核双线程在2.4Mpps,每秒两百四十万包,性能差40倍。 性能高在哪?关键一点,DPDK并没有做socket层的协议处理,当然快。其他的,主要是使用轮询替代中断,还有避免核心态到用户态拷贝,并绑定核,避免线程切换开销,还有避免进入系统调用的开销,使用巨页等。 还有很关键的一点,当线程数大于12的时候,使用linux协议栈会遇到互斥的瓶颈,用性能工具看的话,你会发现大部分的时间消耗在spin_lock上。解决方法之一是如github上面的fastsocket,改写内核协议栈,使包始终在一个核上处理,避免竞争等。缺点是需要经常自己改协议栈,且应用程序兼容性不够。 另外一个方法是使用虚拟机,每个特征流只在一个核处理,并用虚拟机隔绝竞争,底层用dpdk做转发,上层用虚拟机做包处理,这样保证了原生的linux协议栈被调用,做到完全兼容应用程序。不过这种方法好像还没有人做成开源的,最近似的是dpdk+虚拟交换机ovs的一个项目。 如果你只想要dpdk的高性能加tcp/ip/udp的处理,不考虑兼容性,那么还可以去买商业代码,我看了下供应商的网站介绍,纯转发性能大概在500-1000周期左右一个包。
Linux处理Packets主逻辑 系统接受数据包的过程 当网卡收到第一个包时候,通过DMA把这个包发送给接受队列(rx) 系统通过中断的方式通知新数据包的到来,同时也需要把数据包传递给内核的buffer(每个包一个buffer,sk_buff struct).一个数据包到来会触发多次的中断,内核处理完毕后,数据包再次传输到用户态空间 瓶颈分析 内核在处理很多包的时候,会消耗非常多的资源,同时也会触发很多次中断,这会严重影响系统处理数据包的性能 内核的sk_buff的设计是为了内核协议栈兼容多个协议。因此所
零拷贝作用 : 在网络编程中 , 如果要进行性能优化 , 肯定要涉及到零拷贝 , 使用零拷贝能极大的提升数据传输性能 ;
DPDK最初动机很简单,网络处理器的软件解决方案,证明IA多核处理器能够支撑高性能数据包处理。 什么是DPDK?对于用户来说,它可能是一个出色的包数据处理性能加速软件库;对于开发者来说,它可能是一个实践包处理新想法的创新工场;对于性能调优者来说,它可能又是一个绝佳的成果分享平台。DPDK在主流Linux包含,比如Debian, Fedora,Redhat, Ubuntu, FreeBSD。 DPDK代码在www.dpdk.org上自由提交,软件发布时间是1年4次,分别是2017年2月、5月8月和11月。本质
Linux内核是高并发服务的关键组件之一。以下是一些可用于优化Linux内核的配置。
Docker的技术依赖于Linux内核的虚拟化技术的发展,Docker使用到的网络技术有Network Namespace、Veth设备对、Iptables/Netfilter、网桥、路由等。接下来,我将以Docker容器网络实现的基础技术来分别阐述,在到真正的容器篇章节之前,能形成一个稳固的基础知识网。
原文链接:https://blog.csdn.net/dog250/article/details/46666029
什么是虚拟化 虚拟化是指计算机元件在虚拟的基础上而不是真实的基础上运行。虚拟化技术可以扩大硬件的容量,简化软件的重新配置过程。CPU的虚拟化技术可以单CPU模拟多CPU并行,允许一个平台同时运行多个操作系统,并且应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高计算机的工作效率。 几种虚拟化软件介绍 RedHat KVM 虚拟化方式:完全虚拟化 架构:寄居架构(linux内核);祼金属架构RHEV-H 特点:祼金属架构RHEV-H或在关键的硬盘和网卡上支持半虚拟化VirtIO,达到最佳性能。 I/
领取专属 10元无门槛券
手把手带您无忧上云