照理来说,USB-CAN这种东西应该已经被做的烂大街的工具,国内居然没有一个拿得出手的开源方案。某立功和PCAN动辄2000+的价格也是离谱。淘宝上各种虚拟串口方案、替换dll兼容某立功软件的各种方案....价格都倒是便宜,性能和可靠性嘛.......就不多说了,上位机软件也是烂的一塌糊涂。
方案:3个核(Linux或Debian) + 1个核(RT-Thread) Debian-AMP工程
D1 是全志科技首款基于 RISC-V 指令集的 SoC,主核是来自阿里平头哥的 64 位的 玄铁 C906。「哪吒」开发板 是全志在线基于全志科技 D1 芯片定制的 AIoT 开发板,是目前还比较罕见的使用 RISC-V SoC 且可运行 GNU/Linux 操作系统的可量产开发板。
最近在学习riscv64架构的一些知识,并且利用做一些项目的机会去了解更多的不同种类的的芯片的架构设计。学习riscv的好处在于其架构是开源的,也就是任何人只要有兴趣和时间都可以利用开源的代码在fpga设计出一款自己的CPU出来,我觉得这是一个深入芯片底层设计的很好的机会。从上层到底层,从知其然到知其所以然,这必将是一个循序渐进的过程,本文梳理了一下riscv上的环境搭建方法(ubuntu18.04),让系统在qemu上正常的运行起来。
NodeMCU 是一个开源的物联网平台。 它使用 Lua 脚本语言编程。该平台基于 eLua 开源项目,底层使用 ESP8266 sdk 0.9.5 版本。该平台使用了很多开源项目, 例如 lua-cjson, spiffs. NodeMCU 包含了可以运行在 esp8266 Wi-Fi SoC 芯片之上的固件,以及基于 ESP-12 模组的硬件。
使用./build.sh -h kernel查看kernel的详细编译命令如下所示。
智能路由器的涌现,让“刷路由器”这个概念突然也火了起来。刷路由器到底是怎么一回事?今天我们一起来谈谈路由器固件的那些事吧。
一个通用 Linux SDK 工程目录包含有buildroot、app、kernel、device、docs、external 等目录。其中一些特性芯片如RK3308/RV1108/RV1109/RV1126等,会有所不同。
在搭建好编译环境并下载好源码后,即可对源码进行编译,编译打包好后,即可将打包好的固件烧写到设备中去。本文主要介绍编译和烧写的方法。
因为嵌入式往往需要把程序放到板子上去运行,而再树莓派上做rt-thread开发调试的时候,通常有三种办法。
比起stm32来虽然没有强大的集成开发环境、仿真调试器和生态资源,但毕竟价格便宜。
Linux 中管理编译的文件是 Makefile,Android 系统管理编译的文件是 Android.mk,他们的语法相似,都会定义编译目标,声明依赖关系。
大家随意哈,只要是一台linux的机子就可以,不管是图形页面还是命令行形式使用,只要自己可以操作就可以
本文主要介绍了 Allwinner 安全方案的组成与功能。安全完整的方案基于 normal 方案扩展, 覆盖硬件安全、安全启动(Secure Boot)、安全系统(Secure OS)、安全应用(Trusted apps)等方面。本文从硬件安全、安全启动(Secure Boot)、安全系统(Secure OS)、安全应用的开发(TA/CA 开发指引)、固件密钥存储、安全系统在 Flash 上的加密保存几个方面进行介绍。
在这篇文章中,将会通过树莓派4的Linux的启动过程,描述如何进行嵌入式Linux系统开发的思路。通过树莓派4B的启动流程,看到一个Linux启动过程,同时,通过一步一步搭建一个完整的树莓派嵌入式Linux开发环境,来指导分析各部分的开发过程。
进入工程目录下有buildroot、app、kernel、u-boot、device、docs、external等目录。每个目录或其子目录 会对应一个git工程,提交需要在各自的目录下进行。
针对ARM-Linux程序的开发,主要分为三类:应用程序开发、驱动程序开发、系统内核开发,针对不同种类的软件开发,有其不同的特点。 今天我们来看看ARM-Linux开发和MCU开发的不同点,以及ARM-Linux的基本开发环境。
针对ARM-Linux程序的开发,主要分为三类:应用程序开发、驱动程序开发、系统内核开发,针对不同种类的软件开发,有其不同的特点。今天我们来看看ARM-Linux开发和MCU开发的不同点,以及ARM-Linux的基本开发环境。
编写目的:本文档作为Allwinner Tina Linux系统平台开发指南,旨在帮助软件开发工程师、技术支持工程师快速上手,熟悉Tina Linux系统的开发及调试流程。
编译后在 Buildroot 目录 output/rockchip芯片型号recovery/images 生成 recovery.img。 需要特别注意 recovery.img 是包含 kernel.img,所以每次 Kernel 更改,Recovery 是需要重新打包生成 例如:
拿到树莓派后,你需要进行一些初始化设置,以便于用起来更方便。除此之外,你可能需要安装一些软件,以便树莓派能实现更加强大的功能。 常见初始化设置 1)设置密码: 树莓派的默认用户名是pi,没有密码。这意味着别人可以随意使用你的树莓派。你可以在终端中为pi用户设置密码: $sudo passwd pi 2)拓展文件系统 一开始的Raspbian镜像只有4G。这意味着你的树莓派也只会使用SD卡上4G的空间。如果SD卡有16G大小,那么就浪费了12G的空间。为此,我们可以让Raspbian的文件系统扩展到整张SD
st官方固件库是在寄存器操作之上的,但是使用寄存器操作的话,需要注意的地方很多,需要对照参考手册一个一个赋值,稍有不慎便会出错,所以固件库将外设的初始化封装成初始化结构体,将外设的操作封装在函数中,将寄存器赋值的操作都封装起来,我们只需要调用API就可以,这样一来既提高了开发效率,也减少了代码量,如果还不能在MDK里熟练使用固件库编程,建议先补基础~接下来,我们在上一节寄存器工程的基础上,添加固件库,使用固件库进行开发。
随着5G时代的到来,物联网扮演的角色也越来越重要,同时也伴随更多的安全风险。IOT安全涉及内容广泛,本系列文章将从技术层面谈一谈笔者对IOT漏洞研究的理解。笔者将从固件、web、硬件、IOT协议、移动应用五个维度分别探讨,由于水平能力有限,不当或遗漏之处欢迎大家指正补充。 IoT固件基础 之所以将固件作为第一个探讨的主题,因为比较基础,IOT漏洞研究一般无法绕过。以下将介绍固件解密(若加密)、解包打包、模拟和从固件整体上作安全评估四部分。 1.1 固件解密 有些IOT设备会对固件加密甚至签名来提高研究门槛和
Makefile 是一种特别设计用来帮助项目的构建管理的文件。它定义了编译器和IDE工程管理系统自动执行的命令集合,主要用于自动化编译,减轻重复性任务的负担。Makefile 文件中包含了一系列的规则来指导如何产生目标文件,这些规则包含目标、依赖和命令:
上一篇文章分了一下ARM系统的路由器漏洞,本次打算尝试一下MIPS系统,于是选了最近DLink路由器的漏洞CVE-2019-17621作为目标。同样一路走来各种踩坑不断,“纸上得来终觉浅,绝知此事要躬行”,对整个过程做一下梳理。
之前就看过说 Windows 不区分大小写,但平时用得少倒也没什么体验,没想到还真能踩一次坑。
开篇说一些仁者见仁智者见智的话,先声明,这只是代表我自己近期浅陋的看法。看到很多人玩路由器,刷各种固件,什么爱快、高格、老毛子、OpenWRT什么的,自己也折腾过,也在恩山论坛里下载各路大神的固件使用。作为一个小白,就自然而然想到,这么多固件,哪个最好?当然对于这个问题,每个人的回答都不一样,毕竟适合自己的才重要。经过我自己不断在网上寻找答案,最后形成了一个成熟的看法,那就是真正的好不好,关键点在驱动,驱动做得会使得路由系统如虎添翼。但是,很多芯片厂家在卖芯片的时候是需要承诺不可进行二次开发的,所以路由器大厂华硕、网件是可以直接向芯片厂商比如高通、博通、MTK买成套的服务,那支持的效果肯定更好。而OpenWRT是开源社区,自然不会购买,所以我们刷在硬路由上的OpenWRT,只能靠破解出来的驱动或者阉割过的开源驱动,所以在效果上会明显跟不上。最后我得出结论,OpenWRT还是装在x86平台上,专注路由功能,WIFI部分还是交给硬路由。
本文是教各位如何安装谷歌的Android操作系统到iPhone上。事先警告,动手能力不强,不喜欢折腾的同学还是不要试了。
Linux著名的GRUB已立n代,2.0以后已经是最受欢迎的bootloader,很多Linux发行版都用它作为缺省的bootloader。GRUB2功能强大,全面支持UEFI启动,甚至是安全启动,实在是行走江湖、杀人越货的必备武器。但于此同时,强大的功能让它越发臃肿,为Linux快速启动带来了负面影响。
为了这个移植,国庆都没有好好出去玩,在公司里弄这个移植,因为公司开发的工具是IAR(32K限制版的,没有版权的,编译FreeRTOS还是搓搓有余的~),在网上下载了移植实例,但都是用Keil编译的,我也是无奈,要是这样的话,我也就不用费心了,本想把Keil的文件一直到IAR当中,可是编译是通过了,可是怎么就是不行,我估计就是两个编译器软件里面有很多集成的功能的不同把,于是我放弃了这条路,试试官网的Demo,在Demo的基础上改改,应该可以吧,弄了好久,今天终于移植成功,特此记录一下。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/z2066411585/article/details/88955900
用户希望Tina SDK 能提供编译工具链,多媒体库和头文件,使得自己编写的应用能编写Makefile 去链接多媒体库来编译生成app应用。 介于此方法,本FAQ提供一份编译系统demo样例。 里面包含说明了:
板子买了一段时间,终于有时间可以玩玩了,论坛上找浪费了很多时间。把虚拟机环境搭建起来,编译好镜像就可以直接使用烧写工具烧写到TF卡上了。由于买的是双TF卡插槽,没有nand,所以只能在TF卡上制作镜像了。制作过程参考官方文档,好好总结一下,一来以后自己再做时图懒图方便,二来可以方便后来人。
之前不是在树莓派里装了raspberryPi官方的系统吗,就是类似于debian的一个系统,然后我不想让它吃灰,就先后安装了花生壳搞内网穿透、AdGuardHome来当家庭路由器的DNS服务器,拦截一下辣鸡流量、frp内网穿透、aria2下载器,但是还是不满足的我一下狠心,把TF卡给格式化了,寻找起了Openwrt的镜像~~~
V85x某方案目前默认Sensor是GC2053。实际使用时若需要用到GC4663(比如wdr功能)和SC530AI(支持500W),可按如下步骤完成切换。
做了一段时间的 GPU 固件和驱动开发,加上平时学习的一些零散的知识,最近打算整理,将这些做成一页文章。 主线任务:梳理 GPU 的知识大纲 =====> 对标 GPU入门工程师 支线任务:了解 GPU 硬件工作机理 支线任务:掌握 GPU 固件工作机理 =====> 对标 GPU固件工程师 支线任务:了解 GPU 驱动 和 GPU 固件的交互接口 支线任务:掌握 GPU 驱动工作机理 =====> 对标 GPU驱动工程师 支线任务:了解 GPU 驱动 和 LIBDRM 的交互接口
SyterKit 是一个纯裸机框架,用于 TinyVision 或者其他 v851se/v851s/v851s3/v853 等芯片的开发板,SyterKit 使用 CMake 作为构建系统构建,支持多种应用与多种外设驱动。同时 SyterKit 也具有启动引导的功能,可以替代 U-Boot 实现快速启动
随着智能家居进入千家万户,作为各个终端的媒介,路由器在智能家居中承担了重要任务。同时,家庭接入网络带宽越来越大,终端数目越来越多,房间面积越来越大因而某些住宅需要Wi-Fi中继,这些都对路由器提出了越来越高的要求。不仅需要更高性能的硬件,还需要优化得更加完善的软件。OpenWrt正是一款智能路由器的优秀固件,今天,就请各位看官随小编一起了解一下OpenWrt吧。
Qt在工业上的使用场景包括工业自动化、嵌入式系统、汽车行业、航空航天、医疗设备、制造业和物联网应用。Qt被用来开发工业设备的用户界面、控制系统、嵌入式应用和其他工业应用,因其跨平台性和丰富的功能而备受青睐。
本指南适用于希望修改ODrive固件的开发人员。 因此,它假定您了解诸如如何使用Git,什么是编译器之类的知识。如果这听起来很陌生,以下内容对您来说可能不适合。 官方发行版在master分支上。 但是,由于您是开发人员,因此建议您使用devel分支,因为它包含最新功能。 该项目正在积极开发中,因此请确保检查更新日志以跟踪更新动态。
综合资料百度云:https://pan.baidu.com/s/1kJdJ6xc12Yg4rPby_MatDA 提取码:4u7d
本人是嵌入式linux小白,之前尝试过多个平台的嵌入式linux学习,但是反反复复没有下去,导致后面再学的时候全部都要重头再来。这次痛定思痛,决定把笔记记录下来。但是为什么不用更好的专用的笔记软件的,比如OneNote之类的。实际上有考虑过,也查过很多的笔记软件资料,多多少少都存在一些问题,比如导出不方便,多平台兼容性问题之类的。所以,不如在网站上写成文章,这样不管换到什么地方都方便我阅读了。
STM32MP157具有A7内核核M4内核,前面介绍的一些文章,都是在A7内核上进行的,本篇来介绍M4内核的开发,以及开发时要用到的STM32 CubeIDE软件的使用。
作者 | 鲁冬雪 近日,字节跳动、英特尔、OCP-OSF、OSFF 社区联合举办的云固件沙龙交流会暨产品发布会顺利落地,在此次活动上,字节跳动正式发布新一代云固件 Cloud Firmware 2.0,这标志着 X86 服务器中产品化 coreboot 的固件解决方案在业界首次完成落地。 据悉,字节跳动历经两次次迭代,云固件 Cloud Firmware 的 LinuxBoot 和 coreboot 快速完成产品化。在整个研发过程中,英特尔为其提供了可生产级别的 FSP,同时帮助字节完成云固件的服务器平台开
查了一下root教程, 如果还需要保留保修, 则需要自己想办法回退版本, 下载搜狐插件到sd卡, 找个linux系统修改sd卡上程序的执行权限, 然后才能开启ssh, 具体的方法可以参考这几篇 http://ju.outofmemory.cn/entry/112262 http://koolshare.cn/thread-1857-1-1.html http://blog.csdn.net/a649518776/article/details/41701163
V853 是一颗面向智能视觉领域推出的新一代高性能、低功耗的处理器SOC,可广泛用于智能门锁、智能考勤门禁、网络摄像头、行车记录仪、智能台灯等智能化升级相关行业。V853 集成Arm Cortex-A7和RISC-V E907 双CPU,内置最大 1T 算力 NPU,使用全志自研 Smart 视频引擎,最大支持5M@25fps H.265编码和5M@25fps H.264编解码,同时集成高性能 ISP 图像处理器,可为客户提供专业级图像质量。V853 还支持 16-bit DDR3/DDR3L,满足各类产品高带宽需求;支持 4lane MIPI-CSI/DVP/MIPI-DSI/RGB 等丰富的专用视频输入输出接口,满足各类AI视觉产品需求;采用先进的22nm工艺,具有更优的功耗和更小的芯片面积。
物联网的迅速发展涌现了数十亿与互联网连接的无线嵌入式设备。 从医疗设备到坦克传感器, 智能恒温器, 智能路灯, 水监视器等等, 物联网比以往任何时候都应用广泛。
v85x 平台包括了 V853, V853s, V851s, V851se。 s后缀代表芯片内封了DDR内存,e后缀代表芯片内封 ephy。拥有 Cortex-A7 core@900MHz, RISC-V@600MHz 和一个 0.5TOPS(VIP9000PICO_PID0XEE, 567MACS, 576 x 348M x 2 ≈ 500GOPS) 的 NPU。其中的 RISC-V 小核心为 平头哥玄铁E907
这块板子上的主芯片是一颗 Arm Cortex M3 + DSP 的异构芯片,结构大概是这样的:
领取专属 10元无门槛券
手把手带您无忧上云