LINUX的库提供的波特率是标准波特率,应用时有时会用到非标准的波特率。以下试验使用的xilinx的zynq7020,linux内核是4.14版本。以增加波特率100k为例。看了一些直接在应用端改的一些方法,已经取消了,所以更改了内核
无论是从事单片机、ARM,还是FPGA、DSP开发,都离不开串口!而且在一些银行、金融、证券、电信、工控的应用场合,还可能需要在一台主机上同时使用几十路串口!
关于RS-232C串口总线通信标准请参见我的另一个系列专题文章(还未在公众号更新,请点击查看原文或者复制链接移步至csdn博客查看):
在PROFIBUS的应用中,时常会出现掉站的情况,通常的做法是降低通信的波特率。例如,波特率在1.5Mbps时,两分钟掉一次站点,修改为500Kbps时,半个小时掉一次站点,再降低波特率到187.5Kbps时,一两个小时掉一次站点,最后不管怎样降低波特率,都会掉站,只是掉站的间隔时间稍微变长,这是什么原因呢?
上一篇推文里已经对STC单片机下载程序过程做了简述,今天的问题是解决有部分小伙伴没法下载程序的问题的,在解答这个问题之前,小编觉得有必要对STC_ISP 软件的使用做一个简要的描述,具体请看我BB。
介绍 Linux 内核中 UART 驱动的接口及使用方法,为 UART 设备的使用者提供参考。
本文链接 想象一个世界,你可以在那写javascript来控制搅拌机,灯,安全系统或者甚至是机器人。是的,我说的是机器人。那个世界就是这儿,现在使用node serialport。它提供一个非常简单的接口所需要的串口程序代码Arduino 单片机, X10 无线通信模块, 或者甚至是上升到 Z-Wave 和Zigbee . 在这个物理世界,你可以随心所欲(The physical world is your oyster with this goodie.)。想完全了解为什么我们做这个,请阅读NodeBots - The Rise of JS Robotics.
串口是我们实际工作中经常使用的一个接口,比如我们在Linux下使用的debug串口,它用来登录Linux系统,输出log。另外我们也会使用串口和外部的一些模块通信,比如GPS模块、RS485等。这里对Linux下串口使用做个总结,希望对大家有所帮助。
重要:串口设置的时候,终端仿真模式和波特率必须设置一致,在这里统一设定终端仿真模式为vt100,波特率设置为115200。
波特率是指每秒钟传输的比特数,通常用波特每秒(bps)或者每秒钟波特数(bps)来表示,它是串行通信中重要的参数之一。波特率9600和115200分别代表了串行通信中的两种不同的数据传输速率。它们之间有着明显的区别,涉及到数据传输的速度、稳定性和适用场景等方面的差异。
原文地址http://homezzy.blog.hexun.com/29601793_d.html 以前自己也遇到过这种情况,模块115200波特率而且不能更改,如何用51产生115200波特率,最近朋友也可能遇到这个问题,,特转载一下原文博客大神的文章 今天解决了一个小问题(查书后才得到确切结论。。。)用51单片机+11.0592的晶振,如何产生115200的波特率? 本来感觉这个小意思,直接初始化定时器1,程序如下: void init_com( void ) { SCON = 0x50 ; //
基于测试板卡:创龙科技TLIMX6U-EVM是一款基于NXP i.MX 6ULL的ARM Cortex-A7高性能低功耗处理器设计的评估板,由核心板和评估底板组成。核心板经过专业的PCB Layout和高低温测试验证,稳定可靠,可满足各种工业应用环境。
你可以通过 iftop、Nethogs 和 vnstat 这三个 Linux 网络命令,了解有关你网络连接的大量信息。iftop 通过进程号跟踪网络连接,Nethogs 可以快速显示哪个在占用你的带宽,而 vnstat 作为一个很好的轻量级守护进程运行,可以随时随地记录你的使用情况。
1、问题背景 有客户反应,XR系列MCU在修改完串口波特率后,打印输出的是乱码,通过仪器抓波形发现输出的波特率与设置不一致。
概述: ☆简而言之,串口传输的波特率即为每秒钟传输二进制的位数。 ☆脱离枯燥乏味的文字描述,我们用波形和数字来看看波特率是什么吧☟。 ☆说明:系统时钟50M(为串口提供时钟的时钟频率),波特率115200。 基础知识:
尤其是通讯间歇性抽风的时候更加麻烦,借助AccessPort能快速定位硬件还是软件故障.
今天说一下串口调试助手中的波特率,首次说一下百度中波特率的定义:波特率,单片机或计算机在串口通信时的速率,指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数,如每秒钟传送240个字符,而每个字符格式包含10位(1个起始位,1个停止位,8个数据位),这时的波特率为240Bd,比特率为10位*240个/秒=2400bps。又比如每秒钟传送240个二进制位,这时的波特率为240Bd,比特率也是240bps。
51 芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用SCON寄存器。
废话不多说,先上源代码链接和testbench的链接,推荐使用UE查看源代码,UE中的VHDL语法、Verilog语法和SystemVerilog语法高亮文件的下载链接在这里。上篇的最后给出了本篇所附代码的uart通信模型的工作过程。本篇的主要内容在源代码里,因此文章内容略显简单。
一、RT-Thread简单介绍 大部分MCU工程师或多或少都接触过实时OS,如今实时操作系统种类繁多,有Ucos,Freertos,liteOS,TinyOS,RT-Thread等等各种实时OS,这么
上节我们了解了Kinetis Flashloader支持的外设SPI和I2C,今天我们来看支持的外设UART和CAN UART外设 飞思卡尔Kinetis Flashloader对UART外设集成了一个自动波特率检测算法,从而提供灵活的波特率选择。 自动波特率特性:如果UARTn被用作连接于Flashloader,为了遵守自动波特率检测算法,那么在检测期间,UARTn_RX 引脚必须保持在高电平,且不能悬空,在Flashloader在UARTn_RX引脚检测到Ping包(0x5A,0XA6)后,Flash
单片机常用的通信方式有串口通信,I2C,SPI,UART等等,在这里说一下基于8051单片机串口通信的基本原理。简要介绍单片机与PC机之间的通信。
记得最早是在2015年就给大家推送过关于CAN通信波特率的设置,当时是以NXP的kinetis系列之KV46为例子来给大家介绍的,最近推送了几篇有关CAN通信的文章,后台又有人问起这个问题,今天我们就来在给大家详细普及下,今天以NXP的汽车级芯片MPC5744p的flexCAN为例,MPC系列是基于PowerPC架构的,和ARM架构的芯片时由区别的,但NXP家的PPC架构和ARM架构如果都是flexCAN的IP,那么驱动基本上可以通用,之前的文章也可供参考。
随着 FPGA/CPLD 器件在控制领域的广泛使用,开发嵌于 FPGA/CPLD 器件内部的通用异步收发器,以实现 FPGA/CPLD 开发系统与 PC 机之间的数据通信是很有实际意义的。FPGA/CPLD与单片机、ARM等器件不同,它内部并没有集成UART,因此要实现串行通信必须要独立开发UART模块。
波特率发生器实际上是一个分频器,从给定的系统时钟频率得到要求的波特率。一般来讲,为了提高系统的容错性处理,要求波特率发生器的输出时钟为实际串口数据波特率的N倍,N可以取值为8、16、32、64等。在本设计中,取N为16,因此波特率发生器的输出号频率应改为9600*16=153.6kbps。 由于串口速率较低,其16倍频率值也不高,因此在设计中,可以不要求波特率发生器输出信号的占空比为50%,在本例中,其占空比为1:325。设计中的波特率发生器的代码(baud_gen.v)如下所列。 module baud_
写这篇文章的原因:因为在linux开发串口应用的时候,遇到了问题,让遇到相同问题的人少走点弯路:
本文主要为嵌入式入门开发者的接口、网口等板卡基础快速测试,当初级学习的开发者拿到板卡,如何在最快时间内测试板卡正常?,继续测试教程(2)的按键、时钟设置、DDR读写、Micro SD接口读写、eMMC读写等测试部分,接下来是测试板卡的SATA接口、USB接口读写、USB HOST模式测试、USB DEVICE模式、串口测试等是否正常。
在CAN总线系统中,波特率的计算是一个关键步骤,它确保网络上的所有设备能够以相同的速率进行通信。
对于树莓派 3B+来说,他的UART功能有三种: 1、内部蓝牙使用; 2、控制终端使用; 3、与其他设备进行串口通信。
并行通信:我们以8位(一个字节)的数据为例,在并行通信下,8位数据是同时传输的,同时发送,同时接受。所以通信的双方需要一个公共的时钟信号。并行传输速度快,效率高。但是传输需要的数据线多,传输距离近。
记得最早是在15年就给大家推送过关于CAN通信波特率的设置,当时是以NXP的kinetis系列之KV46为例子来给大家介绍的,最近推送了几篇有关CAN通信的文章,后台又有人问起这个问题,今天我们就来在给大家详细普及下,今天以我最近使用的NXP的汽车级芯片KEAZ64的mscan为例,之前的文章也可供参考。
串口发送数据给电脑,那么按照约定会设置串口相关的参数,比较重要的就是波特率。设置波特率并不是单片机一方进行设置,而是单片机和电脑都要进行设置。
CAN通信波特率的计算是一个难点,要正确计算设置CAN波特率。CAN2.0协议中定义标称位速率为一理想的发送器在没有重新同步的情况下,每秒发送的位数量,也就是我们说的波特率。 位时间由若干个时间单元
嗨,屏幕前的你还好吗?这里是不二鱼技术分鱼,每周固定科普一些芯片当中的术语或者说专业名词,欢迎持续关注,如有错误,也欢迎批评指正。今天讲一个你们会经常接触的概念-波特率。
写在前面的话 你知道物联网设备以及其他硬件制造商是如何调试和测试自家设备的吗?没错,绝大多数情况下,他们都会留下一个串行接口,这样就可以利用这个接口并通过shell来读取实时的调试日志或与硬件进行交互。现在主要有两种不同的串行接口,但最常见的一种是通用异步收发器(UART)。 在这篇文章中,我们将讨论如何通过UART来与TP-Link WR841N (v9.0)进行连接,整个实际动手操作时间大约在五分钟左右。 UART 在开始之前,我想先跟大家简单介绍一下UART的工作机制,如果你已经了解了的话,可以直
所谓中断方式,就是串口收/发标志位出发中断后,在中断中执行既定操作,可通过函数调用来实现。
本文介绍了如何利用FPGA实现Sobel边缘检测算法,通过仿真实验证明该方法可以大幅提高边缘检测的实时性,从而在嵌入式系统中得到广泛应用。
前言:一张写满求救信息的纸,需要让马路对面的人看到。我们可以让纸飘过去,但这通常很难奏效;也可以折成纸飞机,让它飞过去,但很难保证距离和落地点。当然,更好的办法是将纸与合适的小石头包裹在一起,瞄准对边扔过去,这种方式应该是最有效的。
这个地方是连接到了SCON,控制的话,需要给ES赋1,EA 赋1,优先级直接给低优先级。接下来还是先看看SCON部分的原理图。
拿到这样的需求,我们当然是先得保证通讯正常。于是我找了一个USB例程与一个CAN例程,分别调试验证。
USART是一个高度灵活的串行通讯设备。主要特点为:全双工操作 (独立的串行接收和发送寄存器)、异步或同步操作、主机或从机提供时钟的同步操作、高精度的波特率发生器、支持 5, 6, 7, 8,或 9个数据位和 1个或 2个停止位、硬件支持的奇偶校验操作、数据过速检测、帧错误检测、噪声滤波,包括错误的起始位检测,以及数字低通滤波器、三个独立的中断:发送结束中断、发送数据寄存器空中断,以及接收结束中断、多处理器通讯模式、倍速异步通讯模式。
树莓派从大的方向来说一共出了3代,每一代的CPU外设基本相同,但内核不同,外设里面一共包含两个串口,一个称之为硬件串口(/dev/ttyAMA0),一个称之为mini串口(/dev/ttyS0)。硬件串口由硬件实现,有单独的波特率时钟源,性能高、可靠,mini串口性能低,功能也简单,并且没有波特率专用的时钟源而是由CPU内核时钟提供,因此mini串口有个致命的弱点是:波特率受到内核时钟的影响。内核若在智能调整功耗降低主频时,相应的这个mini串口的波特率便受到牵连了,虽然你可以固定内核的时钟频率,但这显然不符合低碳、节能的口号。在所有的树莓派板卡中都通过排针将一个串口引出来了,目前除了树莓派3代以外 ,引出的串口默认是CPU的那个硬件串口。而在树莓派3代中,由于板载蓝牙模块,因此这个硬件串口被默认分配给与蓝牙模块通信了,而把那个mini串口默认分配给了排针引出的GPIO Tx Rx。 树莓派的串口默认为串口终端调试使用,如要正常使用串口则需要修改树莓派设置。关闭串口终端调试功能后则不能再通过串口登陆访问树莓派,只能通过ssh或者远程桌面连接树莓派后进行控制。
pyserial是一个Python库,它提供了与串口通信相关的功能。它可以让我们在Python程序中直接与串口设备进行通信,如读取和写入串口数据。pyserial是一个跨平台的库,可以在多个操作系统上使用,包括Windows、Linux和MacOS。
云计算和大数据等领先趋势推动了指数级的流量增长和400G以太网的兴起。数据中心网络面临着更大的带宽需求,基础设施需要创新技术来满足不断变化的需求。目前,针对下一代以太网研究了两种不同的信号调制技术:不归零 (NRZ) 和 4 级脉冲幅度调制 (PAM4)。本文将带您了解这两种调制技术并进行比较,以找到 400G 以太网的最佳选择。
好久没更新文章了,这篇文章写写停停,用了近一周的时间,终于写完了,谢谢大家的关注。本篇文章介绍,串口协议数据帧格式、串行通信的工作方式、电平标准、编码方式及Verilog实现串口发送一个字节数据和接收一个字节数据。
随着总线技术在汽车电子领域越来越广泛和深入的应用,特别是自动驾驶技术的迅速发展,汽车电子对总线宽度和数据传输速率的要求也越来也高,传统CAN(1MBit/s,8Bytes Payload)已难以满足日益增加的需求。
前两节我们介绍串口驱动的框架和tty core部分。这节我们介绍和硬件紧密相关的串口驱动部分。
最开始以为minicom不支持,因为第一眼在配置界面的选项中没看见。后来发现其实是支持的
领取专属 10元无门槛券
手把手带您无忧上云