本实验是在我们基本上掌握DSP中断机制的基础上,进一步学习如何在DSP内部实现定时器的正确操作以及定时器中断服务程序的编写。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/158894.html原文链接:https://javaforall.cn
STC12C5A16S2系列单片机有4个定时器,其中定时器0和定时器1两个16位定时器,与 传统8051的定时器完全兼容,也可以设置为1T模式,当在定时器1做波特率发生器时,定时 器0可以当两个8位定时器用(另外2路PCA/PWM可以再实现2个16位定时器)。
定时器是我们最常用到的功能,一般用来完成定时功能,本章我们就来学习一下 Linux 内核提供的定时器 API 函数,通过这些定时器 API 函数我们可以完成很多要求定时的应用。Linux内核也提供了短延时函数,比如 微秒、纳秒、毫秒延时函数,本章我们就来学习一下这些和时间有关的功能。
硬件定时器产生的周期性中断,中断频率就是系统频率(拍率)。系统拍率可以设置,单位是HZ,可在编译内核时通过图形化界面设置,设置路径如下:Kernel Features -> Timer frequency([=y])
对于一个复杂的软件系统,定时器的对任务的管理和调度至关重要,通常定时器的管理已成为一个复杂系统的重要基础设施。
理想状况是:按下、松开按键,各产生一次中断,也只产生一次中断。 但是对于机械开关,它的金属弹片会反复震动。GPIO电平会反复变化,最后才稳定。一般是几十毫秒才会稳定。 如果不处理抖动的话,用户只操作一次按键,会发生多次中断,驱动程序可能会上报多个数据。
前言 今天我们来评测linux内核的高精度定时器。顺便利用通过Tektronix示波器 和 DS100 Mini 数字示波器进行交叉测试。 因项目需要用到精准的时间周期,所以要评估它的可行性,并验证正点原子的示波器能不能支撑嵌入式开发流程。 Linux高精度定时器说明 其实传统的低分辨率定时器随着技术的演进,已经无法满足开发需求。而且硬件的不断发展,硬件定时器的精度也越来越高,这也给高精度定时器创建了有利条件。 低分辨率的定时大部分时间复杂度可以实现O(1),当有进位发生时,不可预测的O(N)定时器级联迁移
内核定时器是内核用来控制在未来某个时间点(基于jiffies(节拍总数))调度执行某个函数的一种机制,相关函数位于 <linux/timer.h> 和 kernel/timer.c 文件中。
之前我在「实战!我用“大白鲨”让你看见 TCP」这篇文章里做了 TCP 三次握手的三个实验:
STM32F1的定时器非常多,由2个基本定时器(TIM6、TIM7)、4个通用定时器(TIM2-TIM5)和2个高级定时器(TIM1、TIM8)组成。基本定时器的功能最为简单,类似于51单片机内定时器。通用定时器是在基本定时器的基础上扩展而来,增加了输入捕获与输出比较等功能。高级定时器又是在通用定时器基础上扩展而来,增加了可编程死区互补输出、重复计数器、带刹车(断路)功能,这些功能主要针对工业电机控制方面。这里主要介绍通用定时器。
TCP协议仅定义框架,也就是发送端和接收端需要遵循的“规则”。TCP协议的实现经过多年的改进,有了多个不同的版本。比较重要的有Tahoe、Reno、NewReno、SACK、Vegas等,有些已经成为了影响广泛的RFC文档,有些则成为了Unix/Linux操作系统的标准选项。
http://mpvideo.qpic.cn/0b2e2iaamaaaemajnaohfbrfbuwda3jaabqa.f10002.mp4? 本课程主要目的在于以微控制器为蓝本,打好电子系统智能化领
计划任务是用于安排命令和程序在指定时间内运行或定期运行,它可以从计划表中添加和删除任务,按需启动和停止任务、显示和更改计划任务。
每个路由器周期性的与相邻路由器交换若干<x,d>二元组组成的路由信息,x表示可到达的目的站(主机或网络),d代表到目的站的距离(跳数);
大内核锁(BKL)现在已经成为了一个遥远的记忆,但在那么多年里,它都是内核开发社区面临的一项棘手问题。然而 BKL 的终结并不意味着内核没有其他有问题的锁。近来,已经有一些关注转向了软中断锁(software-interrupt lock)或“下半部锁”(bottom half lock),因为它可能会在实时系统上导致延迟。Frederic Weisbecker 正在采取最新行动来减小这个锁的影响范围,该方法就是基于移除 BKL 时所采取的方法。
Linux 内核通常会使用 定时器 来做一些延时的操作,比如常用的 sleep() 系统调用就是使用定时器来实现的。
实验环境:普中实验系统;Keil μVision 4软件; 实验目的: (1)掌握单片机定时器的原理和控制方法。 (2)通过编程利用定时器实现定时功能,并利用该定时功能实现时钟分、秒的功能。 硬件连线: P2^1口连接led1 P2^3 口连接led3 P2^5 口连接led5 P2^7 口连接led7
STM32中有众多定时器,如图 25.1.1 所示。按所处的位置可分为核内定时器和外设定时器。核内定时器就是前面 “第11章 基础重点—SysTick定时器”介绍的SysTick定时器,该定时器位于Cortex-M3内核中。外设定时器由芯片半导体厂商设计,如STM32系列,包含常规定时器和专用定时器。常规定时器是本章重点介绍的介绍的内容,专用定时器在后面几章讲解。
本章节为大家讲解嘀嗒定时器SysTick,嘀嗒定时器比较容易掌握,其实大家只要知道它是一个24位的递减计数器,支持中断就可以了。
《Cortex-M3权威指南》中对SysTick的描述,SysTick定时器被捆绑在NVIC中,用于产生SYSTICK异常(异常号:15)。它是一个24位的递减定时器,当计数到 0 时,将从RELOAD 寄存器中自动重装载定时初值,开始新一轮计数。大多数操作系统需要一个硬件定时器来产生滴答中断,作为整个系统的时基。例如,为多个任务许以不同数目的时间片,确保没有一个任务霸占系统;或者把每个定时器周期的某个时间范围赐予特定的任务等,还有提供各种定时功能,都与滴答定时器有关。因此,需要一个定时器产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统的“心跳”的节奏。该定时器的时钟源可以是内部时钟(FCLK),或者是外部时钟(CM3处理器上的STCLK信号)。SysTick定时器能产生中断,异常中断。使用内核的SysTick定时器来实现延时,可以不占用系统定时器,由于和MCU外设无关,所以代码的移植,在不同厂家的Cortex-M内核MCU之间,可以很方便的实现。
教程不断更新中:http://www.armbbs.cn/forum.php?mod=viewthread&tid=98429 第45章 emWin6.x窗口管理器之定时器使用 本期教程为
Linux定时器分为低精度定时器和高精度定时器两种类型,内核对其均有实现。本文讨论的是我们在应用程序开发中比较常见的低精度定时器。作为常用的基础组件,定时器常用的几种实现方法包括:基于排序链表实现、基于小根堆实现、基于红黑树实现、基于时间轮实现。本文讲解的是时间复杂度最优,也是linux内核采用的基于时间轮的实现方式。
论坛原始地址(持续更新):http://www.armbbs.cn/forum.php?mod=viewthread&tid=99514 第21章 ThreadX定时器组 本章节为大家讲解
当前采用的这种超声波测距模块在各大高校实验室、毕设、课设里用的很多,原理很简单,通过声波测距,发出的声音碰到障碍物会反弹,声音在空气里传播的速度是已知的,根据时间就能计算出测量的距离。这款超声波模块内部自带了时间计算电路,型号是HC-SR04 ,它可提供 2cm-400cm 的非接触式距离感测功能,距精度可达高到 3mm; 整个模块包括了超声波发射器、 接收器与控制电路。
软件意义上的定时器最终依赖硬件定时器来实现,内核在时钟中断发生后检测各定时器是否到期,到期后的定时器处理函数将作为软中断在底半部执行。实质上,时钟中断处理程序会换起TIMER_SOFTIRQ软中断,运行当前处理器上到期的所有定时器。定时器使用例子:按键的消抖,定时产生事件等。
在BSP.c文件中定义如下三个串口初始化函数,同时将这三行添加到BSP.h文件里,对函数进行声明:
本文介绍了如何通过Linux内核定时器实现LED灯的闪烁,从硬件的配置、驱动程序以及示例代码方面进行了详细的阐述。通过申请GPIO、配置GPIO、编写驱动程序以及添加设备到内核和加载设备,最终实现了LED灯的闪烁。
最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=98429 第15章 ThreadX GUIX定时器更新功能 本章节为大家
从系统的角度看,任务是竞争系统资源的最小运行单元。任务可以使用或等待CPU、使用内存空间等系统资源,并独立于其它任务运行。
HZ定义在<asm/param.h>,在i386平台上,目前采用的HZ值是1000。
在上面工作方式下,Linux 2.6.16 之前,内核软件定时器采用timer wheel多级时间轮的实现机制,维护操作系统的所有定时事件。timer wheel的触发是基于系统tick周期性中断。
HC-SR04 超声波测距模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm;模块包括超声波发射器、 接收器与控制电路。
任何一款单片机,其实学习步骤都是一样的,不管是8位的入门芯片,还是32位的高速芯片。以下步骤是必须的,按部就班的学完了,你不成大神你来找我。
SysTick定时器(又名系统滴答定时器)是存在于Cortex-M3的一个定时器,只要是ARM Cotex-M系列内核的MCU都包含这个定时器。使用内核的SysTick定时器来实现延时,可以不占用系统定时器,节约资源。由于SysTick是在CPU核内部实现的,跟MCU外设无关,因此它的代码可以在不同厂家之间移植。
软件意义上的定时器最终依赖硬件定时器来实现, 内核在时钟中断发生后检测各定时器是否到期 , 到期后的定时器处理函数将作为软中断在底半部执行 。实质上,时钟中断处理程序会 换起TIMER_SOFTIRQ软中断 ,运行当前处理器上到期的所有定时器。
最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=93255 第26章 STM32F429的定时器应用之TIM1-TIM14
最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=93255 第26章 STM32F407的定时器应用之TIM1-TIM14
进互联网公司操作系统和网络库是基础技能,面试过不去的看,这里基于嵌入式操作系统分几章来总结一下任务调度、内存分配和网络协议栈的基础原理和代码实现。
通过排序链表来保存定时器,由于链表是排序好的,所以获取最小(最早到期)的定时器的时间复杂度为 O(1)。但插入需要遍历整个链表,所以时间复杂度为 O(n)。如下图:
第一个“#”表示是这一行是注释 第二个“!”表示这一行不是普通注释,而是解释器路径的声明行 后面的“/usr/bin/perl”是perl解释器的安装路径,也有可能是:“/usr/local/bin/perl”,如果那个不行,就换这个 use strict是严格检查语法
“我叮咛你的 你说 不会遗忘 你告诉我的 我也全部珍藏 对于我们来说 记忆是飘不落的日子 永远不会发黄 相聚的时候 总是很短 期待的时候 总是很长 岁月的溪水边 捡拾起多少闪亮的诗行 如果你要想念我 就望一望天上那 闪烁的繁星 有我寻觅你的 目光” 谢谢你,曾经来过~ 中断与定时器是我们再熟悉不过的问题了,我们在进行裸机开发学习的 时候,这几乎就是重难点,也是每个程序必要的模块信息,那么在Linux中,我们又怎么实现延时、计数,和中断呢? 一、中断 1.概述 所谓中断是指cpu在执行程序的过程中,出现了某些
上一篇文章我们简单了解了一些关于时间的概念,以及Linux内核中的关于时间的基本理解。而本篇则会简单说明时钟硬件,以及Linux时间子系统相关的一些数据结构。
PWM(Pulse Width Modulation,脉冲宽度调制)。是一种利用微处理器的数字输出来对模拟电路进行控制的技术,广泛应用在测量、通信、功率控制等诸多领域。
文章介绍了如何利用驱动精灵软件对Windows系统进行驱动安装。主要包括驱动精灵软件的下载和安装、驱动精灵软件的使用方法、如何进行驱动备份和还原、如何进行驱动更新和优化等。同时,文章还介绍了如何使用驱动精灵软件进行声卡驱动、显卡驱动、网卡驱动等驱动程序的安装和更新。
很多人都知道,setTimeout 是有最小延迟时间的,根据 MDN 文档 setTimeout:实际延时比设定值更久的原因:最小延迟时间 中所说:
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第33章 STM32H7的定时器应用之TIM1-TIM17
当Tick中断累加Tick值,到达tA的时候,就会把定时器任务从DelayList放到ReadyList
领取专属 10元无门槛券
手把手带您无忧上云