从一个通道的图片进行卷积生成新的单通道图的过程很容易理解,对于多个通道卷积后生成多个通道的图理解起来有点抽象。本文以通俗易懂的方式讲述卷积,并辅以图片解释,能快速理解卷积的实现原理。最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子!
MobileNet是针对移动端优化的卷积,所以当需要压缩模型时,可以考虑使用MobileNet替换卷积。下面我们开始学习MobileNet原理,并且先通过Tensorflow函数接口实现MobileNet,再手写python代码实现MobileNet。
MindSpore提供了数据预处理的功能,可以通过不同种类的数据变换(Transforms)来对原始数据进行处理,然后使用数据处理Pipeline来实现数据预处理。mindspore.dataset 提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。
自动驾驶要求安全,并提供高性能的计算解决方案来处理极其精确的传感器数据。研究人员和开发人员必须优化他们的网络,以确保低延迟推理和能源效率。多亏了NVIDIA TensorRT中新的Python API,这个过程变得更加简单。
Caffe 使用的是 OpenCV 的 Blue-Green-Red (BGR),而不是通用的 Red-Green-Blue (RGB).
在上一篇文章中<一步一步解读神经网络编译器TVM(一)——一个简单的例子>,我们简单介绍了什么是TVM以及如何利用Relay IR去编译网络权重然后并运行起来。
caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。
Tensorboard 是 TensorFlow 的一个附加工具,可以记录训练过程的数字、图像等内容,以方便研究人员观察神经网络训练过程。可是对于 PyTorch 等其他神经网络训练框架并没有功能像 Tensorboard 一样全面的类似工具,一些已有的工具功能有限或使用起来比较困难 (tensorboard_logger, visdom等) 。TensorboardX 这个工具使得 TensorFlow 外的其他神经网络框架也可以使用到 Tensorboard 的便捷功能。TensorboardX 的 github仓库在这里。
Caffe2 提供了对图片进行加载、裁剪、缩放、去均值、batch 等处理的函数 - helper.py.
神经网络具有的推理功能,使得许许多多实时应用变为可能——比如姿态估计和背景模糊。这些应用通常拥有低延迟的特点,并且还具有隐私意识。
本文介绍了Java中的字符流,包括Reader、Writer、InputStream、OutputStream、CharArray、String等,以及如何使用字符流进行文件操作、读取和写入字符、缓冲字符流等。
传统使用opencv自带的swapaxes进行转换,然后使用pytorch的from_numpy转为tensor
还用介绍吗,直接看下面的系列文章了解OpenVINO是干什么用的,还有如何与OpenCV一起使用,实现对DNN模块的加速运行,OpenVINO SDK开发使用等相关技术。
项目链接:https://aistudio.baidu.com/aistudio/projectdetail/1932295
将特征缩放至特定区间 将特征缩放到给定的最小值和最大值之间,或者也可以将每个特征的最大绝对值转换至单位大小。这种方法是对原始数据的线性变换,将数据归一到[0,1]中间。转换函数为:
我们不可能像「太上老君」那样,拿着浮尘,24 小时全天守在「八卦炉」前,更何况人家还有炼丹童、天兵天将,轮流值守。
Jetson AGX Xavier具有两个NVIDIA深度学习加速器 (DLA)引擎,如图5所示,它们减轻了对固定功能卷积神经网络(CNN)的推理。这些引擎提高了能源效率,释放了GPU来运行用户所执行的更复杂的网络和动态任务。
Read More: https://blog.tarkalabs.com/how-to-build-a-web-application-using-rust-part-iii-ed6511ebaa97
@property (nonatomic, copy) NSString *p_name;
最近百度飞桨在业内率先开源了口罩检测模型,并且在北京地铁实际上线。该模型能够准确地对未戴口罩以及错误佩戴口罩的情况进行识别和检测,辅助一线地铁工作人员进行防疫工作。口罩模型的上线应用,主要是借助了百度飞桨推理库Paddle Inference。之前我们已经对口罩检测模型做过报导(点击此处查看)。
可以发现在和代码存放路径同级的路径下会多出一个 logs 的文件夹,文件夹内文件如下:
ChainerCV是一个使用Chainer训练和运行神经网络以进行计算机视觉任务的工具集合。
好就没有写点OpenCV4 + OpenVINO的应用了,前几天上课重新安装了一下最新OpenVINO2020.3版本,实现了一个基于OpenCV+OpenVINO的Python版本人脸表情识别。100行代码以内,简单好用!
今天来水一片文章,基于开源的Pyramidbox大规模人脸检测编写的PaddlePaddle教程,为了方便训练预测,本教程做了一定的修改。这个模型虽然大,但是符合大规模人群中也可以准确地检测到人脸,就是遮挡比较严重也能正确检测。
OpenVINO不仅通过其IE组件实现加速推理,其提供的预训练库还支持各种常见的图像检测、分割、对象识别等的计算机视觉任务。前面小编写过一系列的文章详细介绍过OpenVINO的各种应用,可以看这里回顾一下:
英特尔从去年推出OpenVINO开发框架,从此以后几乎每三个月就更新一个版本,最新版本2019R03,但是此版本跟之前的版本改动比较大,所以在配置Python SDK支持与开发API层面跟之前都有所不同。这里假设你已经正确安装好OpenVINO框架。如果不知道如何安装与配置OpenVINO可以看我在B站视频教程:
然后在yolov5_tensorrt_int8_tools的convert_trt_quant.py 修改如下参数
Tensorboard是Tensorflow官方提供的实用可视化工具,可以将模型训练过程中的各种数据保存到本地,然后在web端可视化展现这些信息,直观便捷的方便我们进行优化调试。
OpenVINO提供的场景文字检测模型准确率是非常的高,完全可以达到实用级别,其实OpenVINO还提供了另外一个场景文字识别的模型,总体使用下来的感觉是没有场景文字检测那么靠谱,而且只支持英文字母与数字识别,不支持中文,不得不说是一个小小遗憾,但是对比较干净的文档图像,它的识别准确率还是相当的高,速度也比较快,基本上都在毫秒基本出结果。
看起来,张量是一个物理学概念,不过在这里,我们不用想的那么复杂,简单来理解,张量就是一个多维数组,当然如果它的维度是0那就是一个数,如果维度是1那就是一个矢量,或者称作一维数组。在PyTorch中都是使用张量的概念和数据结构来进行运算的。
如果读者使用过百度等的一些图像识别的接口,比如百度的细粒度图像识别接口,应该了解这个过程,省略其他的安全方面的考虑。这个接口大体的流程是,我们把图像上传到百度的网站上,然后服务器把这些图像转换成功矢量数据,最后就是拿这些数据传给深度学习的预测接口,比如是PaddlePaddle的预测接口,获取到预测结果,返回给客户端。这个只是简单的流程,真实的复杂性远远不止这些,但是我们只需要了解这些,然后去搭建属于我们的图像识别接口。
ChainerCV是一个基于Chainer用于训练和运行计算机视觉任务的神经网络工具。它涵盖了计算机视觉模型的高质量实现,以及开展计算机视觉研究的必备工具集。 这些是由ChainerCV支持的检测模型
对于这个特征,我们可以令x=\tau,y=n-\tau,那么x+y=n就是一些直线
最近做个发邮件的功能,需要将日志文件通过邮件发送回来用于分析,但是日志文件可能会超级大,测算下来一天可能会有800M的大小。所以压缩是不可避免了,delphi中的默认压缩算法整了半天不太好使,就看了看7z,在windows下有dll那么就用它吧。 下载7z.dll,还有一个delphi的开发sdk文件,sevenzip.pas。有这两个就可以了。 压缩 使用超级简单 procedure TForm1.Button1Click(Sender: TObject); var Arch: I7zOutArchi
本章将介绍如何使用PaddlePaddle训练自己的图片数据集,在之前的图像数据集中,我们都是使用PaddlePaddle自带的数据集,本章我们就来学习如何让PaddlePaddle训练我们自己的图片数据集。
描述:它的主要作用是可以自定义过滤条件,并过滤从管道传递来的对象数据。(一般在管道符之后)
上个月发布了四篇文章,主要讲了深度学习中的“hello world”----mnist图像识别,以及卷积神经网络的原理详解,包括基本原理、自己手写CNN和paddlepaddle的源码解析。这篇主要跟大家讲讲如何用PaddlePaddle和Tensorflow做图像分类。所有程序都在我的github里,可以自行下载训练。 在卷积神经网络中,有五大经典模型,分别是:LeNet-5,AlexNet,GoogleNet,Vgg和ResNet。本文首先自己设计一个小型CNN网络结构来对图像进行分类,再了解一
OpenVINO是英特尔推出基于CPU/GPU新一代视觉加速框架,可以对常见的各种检测模型与分割模型在CPU端侧实现10倍以上加速。其自带预训练模型库支持多种常见视觉感知与识别应用场景,可以快速搭建原型演示程序与极简应用。相关视频教程可以点击下面链接学习:
有不少开发者在学习深度学习框架的时候会开源一些训练好的模型,我们可以使用这些模型来运用到我们自己的项目中。如果使用的是同一个深度学习框架,那就很方便,可以直接使用,但是如果时不同深度学习框架,我们就要对模型转换一下。下面我们就介绍如何把Caffe的模型转换成PaddlePaddle的Fluid模型。
torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) torch.nn.BatchNorm3d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Description Here, we want to solve path planning for a mobile robot cleaning a rectangular room floor with furniture. Consider the room floor pave
如果不指明opset=11或者12,默认opset=10导出的模型推理时候会非常的慢。指定opset=11以后,导出的模型结构如下:
项目链接:https://aistudio.baidu.com/aistudio/projectdetail/1930877
所有 Jetson AGX Orin 和 Orin NX 板以及所有上一代 Jetson AGX Xavier 和 Xavier NX 模块都具有 DLA 内核。对于至少具有一个 DLA 实例及其相应时钟设置的所有平台。DRIVE Xavier 和 DRIVE Orin 也有 DLA 核心。
https://github.com/hanson-young/nniefacelib
还记得3月份的时候我给大家介绍了PaddleDetection的环境部署、训练及可视化、模型导出。但那只是一个算法程序,一个完整的项目需要在算法的基础上将可视化操作开发成型。今天我给大家带来如何利用Py-Qt编一个显示界面,并结合工业相机实时采集并进行目标检测。
这篇文章介绍深度学习四种主流的规范化, 分别是Batch Normalization(BN[9]), Layer Normalization(LN[7]), Instance Normalization(IN[8])以及Group Normalization(GN[2])。
PaddlePaddle还可以迁移到Android或者Linux设备上,在这些部署了PaddlePaddle的设备同样可以做深度学习的预测。在这篇文章中我们就介绍如何把PaddlePaddle迁移到Android手机上,并在Android的APP中使用PaddlePaddle。
上一节介绍了手眼标定算法Tsai的原理,这一节介绍算法的代码实现,分别有Python、C++、Matlab版本的算法实现方式。
领取专属 10元无门槛券
手把手带您无忧上云