针对海量的网络流量,转发性能是我们最关键的一个方面,那构建高性能的后台服务器有哪些关键的技术和需要注意的地方。
针对海量的网络流量,转发性能是我们最关键的一个方面,那构建高性能的后台服务器有哪些关键的技术和需要注意的地方,今天邀请了后台开发同学童琳和郑胜利来和大家一起谈谈。 一、引言 随着互联网的高速发展,内容量的提升以及对内容智能的需求、云产业的快速突起,作为互联网的计算基石服务器的形态以及使用成为了炙手可热的话题,全球各家大型互联网公司都持续的在服务器平台上有非常大的动作,譬如facebook的OCP等,而整个服务器的生态链也得到了促进和发展。随着服务器硬件性能的提升和网络硬件的开放,传统PC机的处理性能甚者可
There are only two hard things in Computer Science: cache invalidation and naming things.
上来先推荐一本书,《计算机体系结构:量化研究方法(第五版)》,英文能力比较好的建议阅读原版。
产生性能瓶颈有多方面的原因,包括硬件(自身能力限制或BIOS设置不当)、操作系统(某些feature没打开)和软件。软件方面的性能瓶颈主要是由于编码不当导致,常见原因有以下几种:
最近,研究人员发现了一个新型 Golang 恶意软件被用于植入门罗币挖矿程序,并且攻击者可以通过定制修改将挖矿速度提升 15%。
计算机的文件系统是一种存储和组织计算机数据的方法,它使得对其访问和查找变得容易,文件系统使用文件和树形目录的抽象逻辑概念代替了硬盘和光盘等物理设备使用数据块的概念,用户使用文件系统来保存数据不必关心数据实际保存在硬盘(或者光盘)的地址为多少的数据块上,只需要记住这个文件的所属目录和文件名。在写入新数据之前,用户不必关心硬盘上的那个块地址没有被使用,硬盘上的存储空间管理(分配和释放)功能由文件系统自动完成,用户只需要记住数据被写入到了哪个文件中。
从2001年DDR内存面世以来发展到2019年的今天,已经走过了DDR、DDR2、DDR3、DDR4四个大的规格时代了(DDR5现在也出来了)。内存的工作频率也从DDR时代的266MHz进化到了今天的3200MHz。这个频率在操作系统里叫Speed、在内存术语里叫等效频率、或干脆直接简称频率。这个频率越高,每秒钟内存IO的吞吐量越大。但其实内存有一个最最基本的频率叫核心频率,是实际内存电路的工作时的一个振荡频率。它是内存工作的基础,很大程度上会影响内存的IO延迟。我今天想给大家揭开另外一面,这个叫核心频率的东东其实在最近的18年里,基本上就没有什么太大的进步。
优化网站的性能需要花费大量的时间,并且如果要根据自己的需求进行优化则花费的时间可能更多。
早上突然就被Meltdown和Spectre这两个芯片漏洞刷屏了,但基本上都是一些新闻报道,对漏洞的分析和利用的信息基本为0。作为安全研究者,不能只浮在表面,还是要深入了解一下漏洞才行,于是开始研究这方面的资料。结果发现其实这个硬件漏洞的影响非常广,不光是Intel, ARM和AMD也受影响,只是AMD的影响比较小罢了。因此基本上所有的操作系统(Windows,macOS,Linux,Android等)都有被攻击的风险。漏洞有两种攻击模式:一种被称为Meltdown,是在用户态攻击内核态,造成内核信息泄露。另一种被称为Spectre,一个应用可以突破自己的沙盒限制,获取其他应用的信息。另外,因为是硬件漏洞,这个攻击对云的影响非常大,利用这个漏洞,一个guest可以获取host或同一台服务器上其他guest的信息,可以说是一个非常严重的漏洞,因此亚马逊和google都在紧急加班修复漏洞。比如google就公布了漏洞修复的进度在:https://support.google.com/faqs/answer/7622138。虽然是硬件漏洞,但是在系统或软件层面上通过牺牲性能的方法还是可以进行修补的。
作者Liam,海外老码农,对应用密码学、CPU微架构、高速网络通信等领域都有所涉猎。
相对传统的基于内核的网络数据处理,dpdk 对从内核层到用户层的网络数据流程进行了重大突破,我们先看看传统的数据流程和 dpdk 中的网络流程有什么不同。
玄铁RISC-V系列处理器采用自研技术,覆盖从低功耗到高性能的各类场景,支持AliOS、FreeRTOS、RT-Thread、Linux、Android等操作系统,并已成功应用于微控制器、工业控制、智能家电、智能电网、图像处理、人工智能、多媒体和汽车电子等领域。
昨天在网上冲浪,悄悄的卷你们的时候看到一个关于性能优化的不错的文章。作者写了上中下三篇,由浅入深的写了关于性能优化的方方面面,并不仅仅局限于代码层面。
在Android 11中,引入了IORap,这是一个新功能,可大大缩短应用程序的启动时间。我们观察到,各种设备上的应用平均启动速度(冷启动)快5%以上。有的用例显示启动时间快20%以上。
最近看到一个关于性能优化的不错的文章。作者写了上中下三篇,由浅入深的写了关于性能优化的方方面面,并不仅仅局限于代码层面。 我看了之后还是很有收获的,同时也惊叹于作者扎实的技术能力与思考能力。于是借花献佛,把作者的三篇整理合并之后分享给大家。希望你也能有所收获。
网页的性能,大部分情况下是影响用户使用体验的第一要素,特别是对于很多电商、金融网站,可能几秒的性能提升就意味着更大的转化率和收益。
如何做系统性能优化 性能优化的目标是什么?不外乎两个: 时间性能:减小系统执行的时间 空间性能:减小系统占用的空间 一、代码优化 做代码优化前,先了解下硬件Cache: (1)Cache Level:通常来说L1、L2的Cache集成在CPU里,L3的Cache放在CPU外; (2)Cache Size:它决定你能把多少东西放到Cache里,有Size就有竞争,就有替换,才有所谓优化的空间; (3)Cache Type:I-Cache(指令),D-Cache(数据),TLB(MMU的Cache); 代码层次
性能优化的目标是什么?不外乎两个: 时间性能:减小系统执行的时间 空间性能:减小系统占用的空间 一、代码优化 做代码优化前,先了解下硬件Cache: (1)Cache Level:通常来说L1、L2的Cache集成在CPU里,L3的Cache放在CPU外; (2)Cache Size:它决定你能把多少东西放到Cache里,有Size就有竞争,就有替换,才有所谓优化的空间; (3)Cache Type:I-Cache(指令),D-Cache(数据),TLB(MMU的Cache); 代码层次的优化主要从以下两
很好理解,就是当我们还没有访问页面是提前对页面进行渲染,等到我们真正访问页面时就不需要再花费额外的时间去渲染页面了。
作为全球领先的云服务提供商之一,腾讯云*致力于向全球用户提供性能卓越的企业级网络服务。公有云对于服务质量有着严苛的要求,计算、内存、网络以及存储等各项资源的分配能否满足服务水平协议中所承诺的标准,都将直接影响最终用户的应用体验。对于云服务提供商来说,如何在充分利用以上资源,满足服务水平协议的前提下,尽可能减少额外资源开销,也是降低运营成本的关键因素之一。为在降低成本的同时保证优质的服务质量,腾讯云携手深度合作伙伴英特尔,基于腾讯云应用程序界面 (Application Programming Interfaces, API) TGW 与腾讯专门的硬件工程实验室 星星海实验室的创新软硬件结合方案,发挥 TGW 在网络领域的技 术优势,针对网络资源调度及分配展开性能优化。
这个Tracker屏蔽的效果和性能还有待测试,过两天我重新做个种子进行测试。先记录一下搭建的过程。。。
【导语】TensorFlow 1.8.0 近日正式发布,新版本主要有以下改进内容,AI科技大本营对其编译如下。 ▌主要特点及改进 可以将 tf.contrib.distribute.MirroredStrategy() 传递给 tf.estimator.RunConfig() ,能够在一台有多个 GPU 的机器上运行评估器 (Estimator) 模型。 添加 tf.contrib.data.prefetch_to_device() ,支持预取 GPU 内存。 添加梯度提升树作为预先制作的评估器(Esti
上下部分都是固定的,中间每个节假日都是从服务端动态获取数据,所以会出现节假日倒计时延迟加载的情况:
3. CPU与设备(其实也可能是个异构处理器,不过在Linux运行的CPU眼里,都是设备,都是DMA)的cache同步问题
如上图所示,我不知道各位能不能分清,但是对于我这个标准大直男而言,我是真的分不清。
哈喽,宝宝们,已经到八月了呢,9012将近过去三分之二,赶紧看看今年的计划是否正常进行~
导读|H5开屏龟速常是令开发者头疼的问题。腾讯企业微信团队对该现象进行分析优化,最终H5开屏耗时130ms,达到秒开效果!企微前端开发工程师陈智仁将分享可用可扩展的Hybird H5秒开方案。该团队使用离线包解决了资源请求耗时的问题,在这个基础上通过耗时分析找到瓶颈环节,进一步采用“预热”进行优化提速以解决了WebView初始化、数据预拉取、js执行(app初始化)耗时的问题。希望这些通用方法对你有帮助。 背景 服务端渲染(SSR)是Web主流的性能优化手段。SSR直出相比传统的SPA应用加载渲染规避了首
最近重操 CRUD 旧业,又有一些新的发现,故增加一篇 Django ORM:天使与魔鬼 Part II。
关于SocialHunter SocialHunter是一款功能强大的网站安全检测工具,该工具可以帮助广大研究人员轻松爬取给定的URL地址,并寻找目标站点中存在安全问题且可能遭受劫持攻击的社交媒体链接。 如果一个网站存在这样的链接地址,那么攻击者将有可能利用该链接来执行网络钓鱼攻击。除此之外,这种链接也有可能导致企业或网站的名誉受损。值得一提的是,这种社交媒体链接劫持漏洞也包含在了很多漏洞奖励计划之中。 支持的社交媒体平台 Twitter Facebook Instagram Tiktok(不需要
机器之心原创 人工智能研学社 问题:GPU 内存限制 GPU 在深度神经网络训练之中的强大表现无需我赘言。通过现在流行的深度学习框架将计算分配给 GPU 来执行,要比自己从头开始便捷很多。然而,有一件事你会避之唯恐不及,即 GPU 的动态随机存取内存(DRAM(Dynamic Random Access Memory))限制。 在给定模型和批量大小的情况下,事实上你可以计算出训练所需的 GPU 内存而无需实际运行它。例如,使用 128 的批量训练 AlexNet 需要 1.1GB 的全局内存,而这仅是 5
Redis 的缓存淘汰算法则是通过实现 LFU 算法来避免「缓存污染」而导致缓存命中率下降的问题(Redis 没有预读机制)。
如果我们项目是前后端分离并且内容是AJAX动态获取想要进行网站排名优化(SEO)的话,可以使用prerender
内存的关键指标包括内存大小,速度,较低的工作电压和更快的访问速度。DDR5支持8Gb至64Gb的内存,并结合了3200 MT / s至6400 MT / s的多种数据速率。DDR5的工作电压从DDR4的1.2V进一步降低到1.1V。
导语 | 如果你的小程序也遇到了性能问题,我们的实践经验也许可以给到你启发,我们从小程序的启动、加载到交互都进行了探索。顺便说一句,这篇文章在腾讯内部曾被小程序技术总监打赏。 1. 缘起 事情,要从一个周末惬意的下午开始说起…… 那天,手机突然被唤醒,弹出多条微信消息。原来是这周末正在校园推广的活动群发来的,想起之前大家有条不紊的开发进度,和产品沟通的友好过程,应该是活动反响不错。 现实是残酷的: “我们的小程序打开慢成狗!” “这个 loading 加载的过程也太久了!” “滚动加载有点卡,而且很容易报错
用户会经常抱怨自从安装自己的应用后,电脑开机变慢,到底是系统的原因还是应用的原因,为了了解这里的问题,探秘了下windows的开机过程和测试方法。 一、开机过程是怎样的 查看MSDN,微软将开机过程分为四个阶段: 1BIOS初始化阶段 按上电源后,BIOS先进行硬件自检(POST),当检测到合法的操作系统分区,则完成硬件自检。读取MBR(主引导记录 Master boot record),启动Bootmgr.exe(Windows Bootmgr),并调用WinLoad.exe(Windows op
那你完全可以把这个任务交给电脑让它每天自动替你完成,而你只需要从容的打开保温杯,静静地泡一杯枸杞
深度推荐模型(DLRMs)已经成为深度学习在互联网公司应用的最重要技术场景,如视频推荐、购物搜索、广告推送等流量变现业务,极大改善了用户体验和业务商业价值。
深度推荐模型(DLRMs)已经成为深度学习在互联网公司应用的最重要技术场景,如视频推荐、购物搜索、广告推送等流量变现业务,极大改善了用户体验和业务商业价值。但海量的用户和业务数据,频繁地迭代更新需求,以及高昂的训练成本,都对 DLRM 训练提出了严峻挑战。
深度推荐模型(DLRMs)已经成为深度学习在互联网公司应用的最重要技术场景,如各平台的视频推荐、购物搜索、广告推送等流量变现业务,极大改善了用户体验和业务商业价值。但海量的用户和业务数据,频繁地迭代更新需求,以及高昂的训练成本,都对 DLRM 训练提出了严峻挑战。
放弃一件没有结局的事,是对的吗? 宝宝们,最近好吗?幸福吗?快乐吗?要尽量哦~ 客户端预取数据有两种不同的方式: 路由导航前解析数据; 应用程序会等到视图所需数据全部解析之后,传入数据并处理当前视图。当数据准备就绪时,传入视图渲染完整内容,但是如果数据预取需要很长时间,就会出现明显的卡顿。 匹配到渲染的视图后,获取数据; 此策略将客户端数据预取逻辑,放在视图组件的beforeMount函数中。当路由导航被触发时,可以立即切换视图,因此应用程序具有更快的渲染速度。然而,传入视图在渲染时不会有完整的可用数据。
“骑士”漏洞是我国研究团队发现的首个处理器硬件漏洞,该漏洞是因为现代主流处理器微体系架构设计时采用的动态电源管理模块DVFS存在安全隐患造成的。 DVFS模块的设计初衷是降低处理器的功耗,允许多核处理器根据负载信息采用相应的频率和电压运行。一般说来,高运行频率配备高电压,反之采用低电压。但是,当某一个核出现电压和频率不太匹配的情形,如电压偏低无法满足较高频率运行需求时,系统就会出现短暂“故障”,就像是电压不稳灯泡闪烁一样,有时虽然不会影响系统整体运行,但如果该故障发生在安全等级较高的操作过程中,如加解密程序,会因为故障对系统行为结果的干扰会泄露出重要的系统行为信息,影响系统安全。“骑士”攻击正是利用这一漏洞,采用电压故障精准注入的方式,迫使处理器可信执行区(TEE,如ARM TrustZone、Intel SGX等)内的高安全等级程序运行出现故障,从而逐渐暴露其隐含的秘钥信息或者绕过正常的签名验证功能。 针对“骑士”漏洞的攻击完全是在DVFS允许的电压范围内进行,且攻击过程可以完全使用软件在线、远程实现,不需要额外的硬件单元或者线下辅助。“骑士”漏洞广泛存在于目前主流处理器芯片中,可能严重波及当前大量使用的手机支付、人脸/指纹识别、安全云计算等高价值密度应用的安全,影响面广。 攻击者的进程运行在一个低频率的处理器核心,受害者的进程运行在一个高频率的处理器核心上,攻击者进程提供一个短时间的故障电压,控制好电压的大小,使得这个电压对攻击者进程所在处理器核心没有影响,但是能使受害者进程所在处理器核心产生硬件错误,从而影响受害者进程。 具体的利用细节是,准备一个适当的能够发生电压故障的环境,做三件事,一是将受害者程序运行的处理器核心配置成高频率,其它处理器核心配置成低频率;二是攻击者程序用一个固定、安全的电压初始化处理器;三是清楚目标设备的剩余状态,包括Cache布局、分支预测表、中断向量表和状态寄存器等。 通常情况下,能够被VoltJockey注入错误的函数在受害者程序中只占很小的一部分,我们并不能确定其具体的执行时间,因此,攻击者程序需要在受害者程序产生错误之前对其中间执行过程进行监控,等待能够用来注入错误的函数被执行。 硬件注入攻击的目标是改目标函数的一小部分指令和数据,而且,这部分被影响的代码应该尽可能小。因此,错误注入点应该能被精确控制。到能够产生错误注入之前需要的时间,称为“预延迟”。 故障电压的大小和持续时间,是使产生的硬件错误能够被控制的两个因素。找到恰当的电压和持续时间,使得数据按照预期被改变,从而影响原有的程序流程,是非常重要的。 攻击的最终目的是获取受害者程序的敏感数据,或者篡改受害者进程的函数,而不是使受害者程序所在内核崩溃,因此,需要错误注入完成后,尽快恢复处理器核心电压为修改之前的正常值,确保受害者程序继续执行。
顺序预读(prefetch,在Linux中也称为预读,read ahead)是一种用于提升顺序读性能的技术,用于缩小存储设备和应用程序之间巨大的效率差距。Linux内核在通用预读框架中执行顺序文件预读,它主动拦截VFS层中的文件读取请求,并将顺序的请求转换为异步预读请求,为即将到来的请求引入数据块,并在大块中进行。
本文将介绍一种提升 S3 读取吞吐量的新方法,我们使用这种方法提高了生产作业的效率。结果非常令人鼓舞。单独的基准测试显示,S3 读取吞吐量提高了 12 倍(从 21MB/s 提高到 269MB/s)。吞吐量提高可以缩短生产作业的运行时间。这样一来,我们的 vcore-hours 减少了 22%,memory-hours 减少了 23%,典型生产作业的运行时间也有类似的下降。
这个开源项目主要是为那些想深入研究、学习 Linux 内部工作原理等技术专业人士而设计。其优势在于能够帮助用户更好地理解 Linux 操作系统,并且允许他们自由修改、调整操作系统来满足特定需求。
我们以前windows跑.net Framework程序的时候,发布,自己乖乖的替换程序;备份,也是自己一个一个的重命名备份;回滚,发布遇到问题的回滚更是不用说了;运维很是怕我们 这些用windows的啊;
在浏览器里输入网址或者点击链接,网页打开了……这是我们上网时再普通不过的一幕,但是如此简单的表象背后,却隐藏着无比复杂的技术流程。想涨涨知识吗?往下看吧。 一个HTTP请求的过程 为了简化我们先从一个HTTP请求开始,简要介绍一下一个HTTP求情的网络传输过程,也就是所谓的“从输入URL到页面下载完的过程中都发生了什么事情”。 ● DNS Lookup 先获得URL对应的IP地址 ● Socket Connect 浏览器和服务器建立TCP连接 ● Send Request 发送HTT
一个HTTP请求的过程 为了简化我们先从一个HTTP请求开始,简要介绍一下一个HTTP求情的网络传输过程,也就是所谓的“从输入 URL 到页面下载完的过程中都发生了什么事情” ●DNS Lookup 先获得URL对应的IP地址 ●Socket Connect 浏览器和服务器建立TCP连接 ●Send Request 发送HTTP请求 ●Content Download 服务器发送响应 如果下到物理层去讲就有点耍流氓了,如果这些你还认可这几个步骤的话,我们就来讲一下这里面存在的性能问题。 ●如果你对DNS
本文以Windows为列 首先下载 Npcap 数据捕获包,安装完成后,启动 goby即可! 下载地址: https://nmap.org/npcap/dist/npcap-0.9983.exe
领取专属 10元无门槛券
手把手带您无忧上云