| 导语本文主要是讲Linux的调度系统, 由于全部内容太多,分三部分来讲,本篇是中篇(主要讲抢占和时钟),上篇请看(CPU和中断):Linux调度系统全景指南(上篇),调度可以说是操作系统的灵魂,为了让CPU资源利用最大化,Linux设计了一套非常精细的调度系统,对大多数场景都进行了很多优化,系统扩展性强,我们可以根据业务模型和业务场景的特点,有针对性的去进行性能优化,在保证客户网络带宽前提下,隔离客户互相之间的干扰影响,提高CPU利用率,降低单位运算成本,提高市场竞争力。欢迎大家相互交流学习!
| 导语 本文主要是讲Linux的调度系统, 由于全部内容太多,分三部分来讲,调度可以说是操作系统的灵魂,为了让CPU资源利用最大化,Linux设计了一套非常精细的调度系统,对大多数场景都进行了很多优化,系统扩展性强,我们可以根据业务模型和业务场景的特点,有针对性的去进行性能优化,在保证客户网络带宽前提下,隔离客户互相之间的干扰影响,提高CPU利用率,降低单位运算成本,提高市场竞争力。欢迎大家相互交流学习!
软件意义上的定时器最终依赖硬件定时器来实现, 内核在时钟中断发生后检测各定时器是否到期 , 到期后的定时器处理函数将作为软中断在底半部执行 。实质上,时钟中断处理程序会 换起TIMER_SOFTIRQ软中断 ,运行当前处理器上到期的所有定时器。
电源管理(Power Management)在 Linux Kernel 中,是一个比较庞大的子系统,涉及到供电(Power Supply)、充电(Charger)、时钟(Clock)、频率(Frequency)、电压(Voltage)、睡眠/唤醒(Suspend/Resume)等方方面面。
一般的linux都是GPOS(通用)内核。GPOS是不保证实时的,但是对于大多数应用程序来说是没有问题的。GPOS可以充分利用物理资源。但在实时性要求性比较高的场景需要使用实时内核,RT内核。RT的代价就是牺牲掉了资源利用率,使得相同的资源生产能力下降。
设备的中断会打断内核进程中的正常调度和运行,系统对更高吞吐率的追求势必要求中断服务程序尽量短小精悍。但是,这个良好的愿望往往与现实并不吻合。在大多数真实的系统中,当中断到来时,要完成的工作往往并不会是短小的,它可能要进行较大量的耗时处理。 下图描述了Linux内核的中断处理机制。为了在中断执行时间尽量短和中断处理需完成的工作尽量大之间找到一个平衡点,Linux将中断处理程序分解为两个半部:顶半部和底半部。
实时分为硬实时和软实时,硬实时要求绝对保证响应时间不超过期限,如果超过期限,会造成灾难性的后果,例如汽车在发生碰撞事故时必须快速展开安全气囊;软实时只需尽力使响应时间不超过期限,如果偶尔超过期限,不会造成灾难性的后果.
作者简介: 王建峰,对于技术方向(主要是嵌入式领域的OS方向的系统应用)感兴趣,最近在学习操作系统基础。同时也是某芯原厂的驱动工程师,主要是gpu领域的驱动软件。https://gitee.com/hinzer/blog 1 概念介绍 1.1 什么是操作系统? 1.2 如何理解中断机制? 1.3 如何理解系统定时? 1.4 如何理解进程控制? 1.5 如何理解内存管理? 1.6 如何理解堆栈概念? 1.7 内核在源码中的体现? 1.8 如何理解系统调用? 1.9 如何理解特权级? 2 流程分析 2.1 引导
最近在研究异步消息处理, 突然想起linux内核的中断处理, 里面由始至终都贯穿着”重要的事马上做, 不重要的事推后做”的异步处理思想. 于是整理一下~ 第一阶段 获取中断号 每个CPU都有响应中断的
内核的调度操作分为触发和执行两个部分,触发时仅仅设置一下当前进程的TIF_NEED_RESCHED标志,执行的时候则是通过schedule()函数来完成进程的选择和切换。当前进程的thread_info->flags中TIF_NEED_RESCHED位表示需要调用schedule()函数进行调度。内核在两种情况下会设置该标志,一个是在时钟中断进行周期性的检查时,另一个是在被唤醒进程的优先级比正在运行的进程的优先级高时。
由于 APIC中断控制器 有点小复杂,所以本文主要通过 8259A中断控制器 来介绍Linux对中断的处理过程。
“我叮咛你的 你说 不会遗忘 你告诉我的 我也全部珍藏 对于我们来说 记忆是飘不落的日子 永远不会发黄 相聚的时候 总是很短 期待的时候 总是很长 岁月的溪水边 捡拾起多少闪亮的诗行 如果你要想念我 就望一望天上那 闪烁的繁星 有我寻觅你的 目光” 谢谢你,曾经来过~ 中断与定时器是我们再熟悉不过的问题了,我们在进行裸机开发学习的 时候,这几乎就是重难点,也是每个程序必要的模块信息,那么在Linux中,我们又怎么实现延时、计数,和中断呢? 一、中断 1.概述 所谓中断是指cpu在执行程序的过程中,出现了某些
前期我们介绍了经典的8位处理器——理光6502。与此同时,Intel也设计了8008,8051等应用广泛的8位处理器。1976年,Intel推出了新一代处理器8086。
中断 是为了解决外部设备完成某些工作后通知CPU的一种机制(譬如硬盘完成读写操作后通过中断告知CPU已经完成)。早期没有中断机制的计算机就不得不通过轮询来查询外部设备的状态,由于轮询是试探查询的(也就是说设备不一定是就绪状态),所以往往要做很多无用的查询,从而导致效率非常低下。由于中断是由外部设备主动通知CPU的,所以不需要CPU进行轮询去查询,效率大大提升。
HZ定义在<asm/param.h>,在i386平台上,目前采用的HZ值是1000。
单机系统:一个计算机系统只有一个处理器。 多处理器系统:一个计算机系统有多个处理器。
RISC-V指令集中有一类特殊寄存器CSRs(Control and Status Registers),这类寄存器存储了CPU的相关信息,只有特定的控制状态寄存器指令 (csrrc、csrrs、csrrw、csrrci、csrrsi、csrrwi等)才能够读写CSRs。
因而内核提供了两个调度器主调度器,周期性调度器,分别实现如上工作, 两者合在一起就组成了核心调度器(core scheduler), 也叫通用调度器(generic scheduler).
中断是硬件和软件交互的一种机制,可以说整个操作系统,整个架构都是由中断来驱动的。中断的机制分为两种,中断和异常,中断通常为 $IO$ 设备触发的异步事件,而异常是 $CPU$ 执行指令时发生的同步事件。本文主要来说明 $IO$ 外设触发的中断,总的来说一个中断的起末会经历设备,中断控制器,$CPU$&$OS$ 三个阶段:设备产生中断,中断控制器接收和发送中断,$CPU$&$OS$ 来实际处理中断。
CPU执行程序时,由于发生了某种随机的事件(外部或内部),引起CPU暂时中断正在运行的程序,转去执行一段特殊的服务程序(中断服务子程序或中断处理程序),以处理该事件,该事件处理完后又返回被中断的程序继续执行,这一过程称为中断。
(2)如何解决中断处理程序执行过长和中断丢失的问题: Linux 将中断处理过程分成了两个阶段,也就是上半部和下半部。 上半部用来快速处理中断,它在中断禁止模式下运行,主要处理跟硬件紧密相关的或时间敏感的工作。也就是我们常说的硬中断,特点是快速执行。 下半部用来延迟处理上半部未完成的工作,通常以内核线程的方式运行。也就是我们常说的软中断,特点是延迟执行。
本系列参考: 学习开发一个RISC-V上的操作系统 - 汪辰 - 2021春 整理而来,主要作为xv6操作系统学习的一个前置基础。
所谓实时,就是一个特定任务的执行时间必须是确定的,可预测的,并且在任何情况下都能保证任务的时限(最大执行时间限制)。实时又分软实时和硬实时,所谓软实时,就是对任务执行时限的要求不那么严苛,即使在一些情况下不能满足时限要求,也不会对系统本身产生致命影响,例如,媒体播放系统就是软实时的,它需要系统能够在1秒钟播放24帧,但是即使在一些严重负载的情况下不能在1秒钟内处理24帧,也是可以接受的。所谓硬实时,就是对任务的执行时限的要求非常严格,无论在什么情况下,任务的执行实现必须得到绝对保证,否则将产生灾难性后果,例如,飞行器自动驾驶和导航系统就是硬实时的,它必须要求系统能在限定的时限内完成特定的任务,否则将导致重大事故,如碰撞或爆炸等。
在linux kernel里,有一个debug选项LOCKUP_DETECTOR。
CPU 根据程序寄存器(PC)加载指令,详码,执行,写回,并对程序计数器更新,周而复始。
进程是并发环境下,一个具有独立功能的程序在某个数据集上的一次执行活动,它是操作系统进行资源分配和保护的基本单位,也是执行的单位。
OS的正常工作依赖于存储程序原理、堆栈、中断三个部分。 linux内核从一个初始化上下文环境的函数开始执行,即start_kernel函数,创建多个进程或者fork(创建一个与原来进程几乎完全相同的进程)若干进程,我们为每个进程维护一个进程描述和以及进程间的关系PCB。 当中断发生的时候,如mykernel中就是时钟中断发生之后,接下来OS就会为各进程进行调度,利用Swich_to函数在调度队列中选取出一个适合的进程(系统会根据中断向量号来调用相应的中断异常程序)。由CPU和内核堆栈保存当前进程的各寄存器信息(CPU要做两件工作,一是将当前的eip和esp压入到当前进程的内核栈,二是将esp指向当前进程的内核栈,并将eip指向中断处理入口,进入到内核态。),将eip指向要调度的进程执行的代码区,开始执行。
首页_码到城攻码到城攻分享但不限于IT技术经验技巧、软硬资源、所闻所见所领会等,站点提供移动阅读、文章搜索、在线留言、支付打赏、个人中心、免签支付等功能
我们在前面几期的专题中讲清楚了虚拟化的几大基本技术:CPU虚拟化、内存寻址适配虚拟化、IO设备虚拟化和网络虚拟化,也让我们回归到探索虚拟化与云计算技术的初心——
硬件平台环境如下图所示,采用两台带有以太网口的设备相连,一端是PC机插有PCIe的FPGA开发板,运行Windows操作系统;另一端是嵌入式设备,运行VxWorks操作系统。
这是 os summer of code 2020 项目每日记录的一部分: 每日记录github地址(包含根据实验指导实现的每个阶段的代码):https://github.com/yunwei37/os-summer-of-code-daily
早期的操作系统没有真正意义上的“结构”可言,只是大量的过程的集合,过程之间可以互相调用,导致操作系统内部复杂而混乱。
啪啪啪,滋滋滋,通常我们会在手机里听得这些杂音,特别是在一些LLD audio的情况下,更是如此。 audio 杂音产生的原因很多。
公众号后台回复 $interrupt$ 可获取原图,另外我说明一下我画的流程图啊,的确是不标准的,有很多环了,我有试过只画一根线比如说 $iret$ 出去一根线后,按理说不会回到 $iret$ 而是直接指向原任务那个块。但是因为整个流程图的元素太多,这样画很难看很难看,所以我没采用。虽然如上图那么画不是那么准确,但是意思表达应该还是很明确的,而且相对来说好看些。诸位有什么好的建议还请指出,谢谢。不多说废话了,来看 $xv6$ 的中断机制
在上期,小E理解了什么是“时间管理大师”。实际上,这种将物理硬件分配给多个使用者的技术,叫做“时分复用”。计算机操作系统的任务调度模块,实质上提供的就是将CPU以“时分复用”的方式给不同任务使用的机制。
Ingo Molnar 的实时补丁是完全开源的,它采用的实时实现技术完全类似于Timesys Linux,而且中断线程化的代码是基于TimeSys Linux的中断线程化代码的。这些实时实现技术包括:中断线程化(包括IRQ和softirq)、用Mutex取代spinlock、优先级继承和死锁检测、等待队列优先级化等。
中断服务程序一般都是在中断请求关闭的条件下执行的,以避免嵌套而使中断控制复杂化。但是,中断是一个随机事件,它随时会到来,如果关中断的时间太长,CPU就不能及时响应其他的中断请求,从而造成中断的丢失。因此,Linux内核的目标就是尽可能快的处理完中断请求,尽其所能把更多的处理向后推迟。例如,假设一个数据块已经达到了网线,当中断控制器接受到这个中断请求信号时,Linux内核只是简单地标志数据到来了,然后让处理器恢复到它以前运行的状态,其余的处理稍后再进行(如把数据移入一个缓冲区,接受数据的进程就可以在缓冲区找到数据)。因此,内核把中断处理分为两部分:上半部(tophalf)和下半部(bottomhalf),上半部(就是中断服务程序)内核立即执行,而下半部(就是一些内核函数)留着稍后处理。
(1)进程状态转换的时刻:进程终止、进程睡眠,这些过程会主动调用调度程序进行进程调度。 (2)当前进程时间片用完时 (3)进程从中断、异常及系统调用返回到用户态时
seqlock(顺序锁) 用于能够区分读与写的场合,并且是读操作很多、写操作很少,写操作的优先权大于读操作。 seqlock的实现思路是,用一个递增的整型数表示sequence。写操作进入临界区时,sequence++;退出临界区时,sequence再++。写操作还需要获得一个锁(比如mutex),这个锁仅用于写写互斥,以保证同一时间最多只有一个正在进行的写操作。 当sequence为奇数时,表示有写操作正在进行,这时读操作要进入临界区需要等待,直到sequence变为偶数。读操作进入临界区时,需要记录
软件意义上的定时器最终依赖硬件定时器来实现,内核在时钟中断发生后检测各定时器是否到期,到期后的定时器处理函数将作为软中断在底半部执行。实质上,时钟中断处理程序会换起TIMER_SOFTIRQ软中断,运行当前处理器上到期的所有定时器。定时器使用例子:按键的消抖,定时产生事件等。
上一篇文章我们详细介绍了 STM32F030 从复位时取得复位向量,系统初始化,然后跳转到 main( ) 函数的过程。下面我们结合一个最简单的例子,对 Cube 库的使用做一个简单的介绍。
对于X86的单处理器机器,一般采用可编程中断控制器8259A做为中断控制电路。传统的PIC(Programmable Interrupt Controller)是由两片8259A风格的外部芯片以“级联”的方式连接在一起。每个芯片可处理多达8个不同的IRQ输入线。因为从PIC的INT输出线连接到主PIC的IRQ2引脚,所以可用IRQ线的个数限制为15,如图1所示。
系统调用 跟用户自定义函数一样也是一个函数,不同的是 系统调用 运行在内核态,而用户自定义函数运行在用户态。由于某些指令(如设置时钟、关闭/打开中断和I/O操作等)只能运行在内核态,所以操作系统必须提供一种能够进入内核态的方式,系统调用 就是这样的一种机制。
ip模块中存储的是一堆数字信号,网卡内部会把数字信号转换成电信号或者光信号在网线中传输。
现代操作系统一般将 OS 划分非若干层次,再将 OS 的不同功能分别设置在不同的层次中。通常将一些与硬件紧密相关的模块(如中断处理程序等)、各种常用设备的驱动程序以及运行频率较高的模块(如时钟管理、进程调度和许多模块所公用的一些基本操作),都安排在紧靠硬件的软件层次中,将它们常驻内存,即通常所称为的OS 内核。这种安排方式的目的在于两个方面:
我们在使用电脑的时候,比如打开一个视频剪辑器,一个文本编辑器,可以认为它们都是一个进程。假如CPU是单核的,那么在同一时间只能运行一个进程,但是给我们的感觉是视频剪辑器和文本编辑器好像是同时运行的,也就是视频剪辑器在剪辑视频的时候,我们同时可以使用文本编辑器,这是怎么实现的呢?
如前所述,我们知道异常的处理还是比较简单的,就是给相关的进程发送信号,而且不存在进程调度的问题,所以内核很快就处理完了异常。
准备工作以及中断原理与流程与上一篇VxWorks版本一致,不同的是这次的Windows版本下中断的中断流程添加了开关保护。
今天我们学习STM32CubeMX串口的操作,以及HAL库串口的配置,我们会详细的讲解各个模块的使用和具体功能,并且基于HAL库实现Printf函数功能重定向,UART中断接收,本系列教程将HAL库与STM32CubeMX结合在一起讲解,使您可以更快速的学会各个模块的使用
领取专属 10元无门槛券
手把手带您无忧上云