fsck命令被用于检查并且试图修复文件系统中的错误。当文件系统发生错误时,可使用fsck指令尝试修复。
随着硬盘容量、速度的快速发展,硬盘的可靠性问题越来越重要,今天的单块硬盘存储容量可轻松达到1TB,硬盘损坏带来的影响非常巨大。 不同的文件系统(xfs,reiserfs,ext3)都有自己的检测和修复工具。检测之前可以先使用dmesg命令查看有没有硬件I/O故障的日志,如果有,先用fsck看看是不是文件系统有问题,如果不是则可以使用下面介绍硬盘检测和优化方法来修复它。 grep”error”/va/log/messages*; Linux检测硬盘坏道 使用SMART检测硬盘 SMART是一种磁盘自我分析检测技术,早在90年代末就基本得到了普及每一块硬盘(包括IDE、SCSI),在运行的时候都会将自身的若干参数记录下来,这些参数包括型号、容量、温度、密度、扇区、寻道时间、传输、误码率等。硬盘运行了几千小时后,很多内在的物理参数都会发生变化,某一参数超过报警阈值,则说明硬盘接近损坏,此时硬盘依然在工作,如果用户不理睬这个报警继续使用,那么硬盘将变得非常不可靠,随时可能故障。 启用SMART SMART是和主板BIOS上相应功能配合的,要使用SMART,必须先进入到主板BIOS设置里边启动相关设置。一般从Pentium2级别起的主板,都支持SMART,BIOS启动以后,就是操作系统级别的事情了(Windows没有内置SMART相关工具,需要安装第三方工具软件),好在Linux上很早就有了SMART支持了,如果把Linux装在VMware等虚拟机上,在系统启动时候可以看到有个服务启动报错:smartd。这个服务器就是smart的daemon进程(因为vmware虚拟机的硬盘不支持SMART,所以报错)。smartd是一个守护进程(一个帮助程序),它能监视拥有自我监视,分析和汇报技术(Self-Monitoring, Analysis, and Reporting Technology – SMART)的硬盘。SMART体系使得硬盘能监视并汇报自己的运行状况.它的一个重要特性是能够预测失败,使得系统管理员能避免数据丢失。
如果是centos7以上系统可以使用 #yum -y install smartmontools
本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/172
五、Advanced Chipset Features(高级芯片组功能设定)项子菜单
“ hdparm ”(即硬盘参数)是Linux的命令行程序之一,用于处理磁盘设备和硬盘。借助此命令,您可以获得有关硬盘,更改写入间隔,声学管理和DMA设置的统计信息。它还可以设置与驱动器高速缓存,睡眠模式,电源管理,声学管理和DMA设置相关的参数。
colrm命令用于删除文件中的指定列。colrm命令从标准输入设备读取输入,然后将其输出到标准输出设备。如果不加任何参数,则colrm命令不会过滤任何行。
当初我们CPU工厂刚刚来到主板上建厂时,那时候主板上的单位还不多,跟我们打交道最多的就是内存那家伙了。
本文档对内核的 GPIO 接口使用进行详细的阐述,让用户明确掌握 GPIO 配置、申请等操作的编程方法。
获取到int类型的gpio口后,就可以使用linux/gpio.h里的gpio口操作函数:
在计算机操作系统中,所谓的I/O就是 输入(Input)和输出(Output),也可以理解为读(Read)和写(Write),针对不同的对象,I/O模式可以划分为磁盘IO模型和网络IO模型。
1)物理地址:CPU地址总线传来的地址,由硬件电路控制其具体含义。物理地址中很大一部分是留给内存条中的内存的,但也常被映射到其他存储器上(如显存、BIOS等)。在程序指令中的虚拟地址经过段映射和页面映射后,就生成了物理地址,这个物理地址被放到CPU的地址线上。
Allwinner 平台支持三种不同类型的Key:GPIO-Key,ADC-Key,AXP-Key。其中,GPIOKey又包括普通的gpio 按键和矩阵键盘。
前言: 基于KVM的设备虚拟化,就从这里开始吧。 分析: 1,PIO Port IO,所谓端口IO,x86上使用in、out指令进行访问。和内存的地址空间完全隔离。(ARM上没有PIO)。 Gue
前言: 简单回顾一下前文,《内存映射技术分析》描述了虚拟内存的管理、内存映射;《物理内存管理》介绍了物理内存管理。《内存回收》介绍了一下PFRA内存回收。 上述三篇,简单建立Linux的内存管理模型,下面开始分析MMIO技术。 分析: 1,MMIO MMIO,即Memory mapping I/O;在x86上,CPU如果想要和外部交互数据,一种是使用in、out类型的端口访问的指令;一种是mov类型的读写内存的指令。对于前者来讲,就是PortIO(PIO);对于后者,就是MMIO。(这里说明一下,ARM
前言: KVM的设备虚拟化,除了前文《PIO技术分析》,还有另外一个核心概念---MMIO。原计划这里分析一下KVM的MMIO虚拟化。考虑到MMIO比PIO复杂很多,涉及更多的概念,作者打算先分析几篇基本的Linux的内存管理概念,再来分析MMIO。 作者大概想了一下,主要由这几篇构成: 1,虚拟内存管理和内存映射。 2,物理内存管理。 3,内存回收。 分析: 1,虚拟内存概念 x86的CPU有两种运行模式---real mode和protected mode。在real mode下,CPU访问的是物理
之前介绍的PCIe实物模型为PIO模式,可编程PIO模式,软件控制CPU在主机总线上发起一个存储器或IO读写总线周期,并以映射在PCIe设备地址空间的一个地址为目标,根据PCIe总线宽度的区别,在每个时钟周期内可以传输4个或者8个字节的数据。传输效率低且占用CPU周期。
路径:/home/wells/tina-v853-open/tina-v853-open/device/config/chips/v851s/configs/lizard/board.dts(注意路径,要设置为自己的实际路径)
http://www.openluat.com/Product/gprs/Air202.html 我就去官方下载了现在最新的
本次实验环境是Linux2.6.35内核的环境下,下载并重新编译内核源代码(2.6.36);然后,配置GNU的启动引导工具grub,成功运行编译成功的内核。
V853开发板集成了LED、WiFi、蓝牙、以太网、音频、屏幕、USB、TF卡等模块。本章节将对这些模块进行简单的操作介绍,方便开发者快速上手了解开发板。
V853 是一颗面向智能视觉领域推出的新一代高性能、低功耗的处理器SOC,可广泛用于智能门锁、智能考勤门禁、网络摄像头、行车记录仪、智能台灯等智能化升级相关行业。V853 集成Arm Cortex-A7和RISC-V E907 双CPU,内置最大 1T 算力 NPU,使用全志自研 Smart 视频引擎,最大支持5M@25fps H.265编码和5M@25fps H.264编解码,同时集成高性能 ISP 图像处理器,可为客户提供专业级图像质量。V853 还支持 16-bit DDR3/DDR3L,满足各类产品高带宽需求;支持 4lane MIPI-CSI/DVP/MIPI-DSI/RGB 等丰富的专用视频输入输出接口,满足各类AI视觉产品需求;采用先进的22nm工艺,具有更优的功耗和更小的芯片面积。
硬盘分区与格式化概述 总结:主分区(primary partition)和扩展分区(extended partition)总是不能超过4个,扩展分区只有一个/扩展分区不能直接存储数据,最好是保持原有的Disk,添加新的Disk.
常言道:有数据,有真相。数据库的性能瓶颈分析也是需要拿出具体的数据来的,否则单纯的说谁比谁性能强弱,都是没有说服力和根据的。关于内存数据库和磁盘数据库的性能对比也是如此。内存数据库通过读取内存中的数据来实现读写加速,磁盘数据库通过硬盘IO实现数据读写。Linux平台提供了专门的工具来时先磁盘IO性能的获取,该工具为hdparm,本文就该工具的使用做一个详细的介绍。
今天给大侠带来今天带来FPGA 之 SOPC 系列第四篇,NIOS II 外围设备--标准系统搭建,希望对各位大侠的学习有参考价值,话不多说,上货。
Tina 提供了2种 SPI TFT 显示屏的驱动方式。第一种是官方推荐的 fbdev 方式,使用 Framebuffer implementaion without display hardware of AW 进行 SPI屏幕的驱动。另外一种是使用 fbtft 进行 SPI 屏幕驱动。 fbdev 方式由于 pinctrl 在新内核中调用方式出现修改,所以暂时无法使用。修改难度较大。fbtft 虽然官方wiki表明不建议在 Linux 5.4 中使用,但是其实也是可以使用的,只需要修改一下 GPIO 的注册方式就行。
Vivado 2024.1, Vitis Classic 2024.1, Avnet UltraZed Board. AMD R2544 Board, Ubuntu 20.04
本实验利用 8255 实现可编程的并行 IO 扩展功能,并利用其完成交通灯控制。实验要求红灯常亮 30S,绿灯常亮 25S 后闪烁 5S。使用静态数码管显示绿灯常亮倒计时。实验原理图1如下:
本文从例子程序细节上(语法层面)去理解PCIe对于事物层数据的接收及解析。参考数据手册:PG054;例子程序有Vivado生成;
如果设置GPIO0 - GPIO31管脚,则第一个参数填写 pio.P0_0 - pio.P0_31
邓延军 (deng.yanjun@163.com), 硕士研究生, 西安电子科技大学软件工程研究所
本实验采用百问网的100ASK_T113-PRO Base V1.1 , D1s也可以参考进行修改并适配。 本实验所需的文件(含tina根文件系统、SD镜像、设备树、内核配置文件)供大家对比参考:source.zip
Tina V85x 平台适配双目GC2053的操作步骤 GC2053数据手册:ov-GC2053datas
RIFFA 是一种开源通信架构,它允许通过 PCIe 在用户的 FPGA IP 内核和 CPU 的主存储器之间实时交换数据。为了建立其逻辑通道,RIFFA 在 CPU 端拥有一系列软件库,在 FPGA 端拥有 IP 核。本文主要针对其中的DMA性能(Scatter-Gather DMA)进行测试。
1、僵尸进程的产生 在AIX操作系统实施的进程结构中,每一个进程都有一个父进程。当一个进程结束时会通知它的父进程,从而该进程的父进程会收集该进程的状态信息。若父进程在一定的时间内无法收集到状态信息,则系统中就会残留一个僵尸进程。 因为僵尸进程是已经停止的,所以使用杀死进程的方法来杀僵尸进程是无效的。僵尸进程不使用CPU或硬盘等系统资源,而只使用极少量的内存用于存储退出状态和资源使用信息。 2、问题分析 某一个进程在结束时由它的父进程负责删除它。要找到某一个进程的父进程,执行ps -ef命令,输出中的P
设备树修改参考了https://github.com/Tina-Linux/tina-d1x-lichee-rv和sipeed提供的licheerv_d1_compile。
这个直接用官方给的demo就可以 现在说个需求哈,是当初一个人给提出的需求 例如存入的号码 姓名 号码 1 10086 2 10010 ... .... 例如存入的号码 01 0501 0
失去信用而赚的钱应结算在损失里。——罗马 通过这篇文档配置 首先我们下载项目:项目地址 然后复制到我们项目中 创建页面并放入代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Title</title> <link href='Pio/static/pio.css' rel='stylesheet' type='text/c
素时钟不超过180MHz 都支持。或者两个串行RGB 接口,串行RGB 的最高分辨率最大不超过800*480@60
从买第一个Arduino套装开始,我接触机器人有好几年了,但直到最近才开始做完整的课题。期间有两项技能为我打开了新世界的大门:Python和Linux。他们背后,是强大的开源社区。掌握了这两样工具的工具(元工具),你感觉网上遍地是趁手的兵器。 上周在公司内部编程培训时,有一句话深得我心:我们是软件工程师,不是程序员。我们的工作不是写程序,而是合理使用工具解决问题。在Google,如果你觉得自己不得不从零开始写某项功能,只是你还没有找到相应的工具罢了。在开源社区更是如此。 这是一个遥控小车,通过红外遥控或
大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。
2021年1月21日,树莓派基金会发布了首款微控制器级产品:Raspberry Pi Pico。
路径:lichee/linux-5.4/arch/riscv/boot/dts/sunxi/sun20iw1p1.dtsi
如果不修改驱动程序,触摸功能也能使用上,但是x轴是左右反向的,y轴也是如此,在设备树中不能定义处理,需要修改驱动程序。 具体如下。
大家有没有看这篇 https://www.cnblogs.com/yangfengwu/p/8965054.html
输入输出技术(I/O技术)是指计算机系统与外部世界(包括用户和其他计算机系统)进行数据交换的方法和过程。这包括从外设接收数据(输入)和向外设发送数据(输出)。输入输出技术是计算机硬件和软件领域的一个重要部分,它使计算机能够与外部设备如键盘、鼠标、显示器、打印机、网络适配器以及存储设备等进行交互。
效果:https://www.bilibili.com/video/av375230316
今天给大侠带来今天带来FPGA 之 SOPC 系列第六篇,Nios II 程序开发 II,希望对各位大侠的学习有参考价值,话不多说,上货。
领取专属 10元无门槛券
手把手带您无忧上云