首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nature | 手把手教你搭建大规模药物虚拟筛选平台

    目前,一个上市的药物平均需要花费20-30亿美元,并且需要10年左右的研发时间。大部分经费都花费在了昂贵且耗时的湿实验部分,初始Hits阳性率太低以及(临床前)阶段的高损耗率。使用基于结构的虚拟筛选,Hits质量随着筛选化合物的数量而提高。尽管存在大量的化合物数据库,但是缺乏有效的灵活的方式使用计算机集群进行大规模的SBDD的手段。本文介绍VirtualFlow,这是一个高度自动化的开源平台,可以有效的准备化合物库并进行超大规模的虚拟筛选。VirtualFlow能够使用各种强大对接程序。本文准备了目前已知的最大的免费使用的配体库,配体库包含了超过14亿个可商业购买的分子。VirtualFlow可以探索广阔的化学空间,并可以准确的识别与目标蛋白具有高亲和力的分子。

    03

    生信分析人员如何系统入门Linux(2019更新版)

    在生信分析人员如何系统入门R(2019更新版) 里面,我提到过Linux基本上几十年都没有怎么变动过基础知识的,哪怕你现在搜索到十几年前的Linux教学视频,也不会觉得尴尬。而且Linux属于IT工程师必备技能,IT的发展程度远超于我们,再加上各种马哥鸟叔,还有黑马训练营公开30天完整教学视频,按照道理我是没有必要在他们IT专业人士面前班门弄虎的, 毕竟他们随便拿几个偏门知识点就可以问倒我了!不过我们生信技能树的特色是主打生物信息学方向技能建设,而它作为一个典型的教交叉学科,想在此领域成为一个专业靠谱的生信工程师,我们实在是做不到在任何一个非核心知识点投入过多的时间和精力。

    04

    你不会以为它们的免疫评分都是自己算的吧

    但是接下来大家又想问,同样的想比较两个分组的免疫评分的差异,但是免疫评分的工具太多了,比如有一个2019的综述文章:《Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology》比较了常见的免疫细胞比例推断工具的表现,另外一个2018的综述《Quantifying tumor-infiltrating immune cells from transcriptomics data》提到工具更多,起码十几款了。大家也不可能一一研读,下载,测试,使用它。但是又确实看到了大量数据挖掘文章都使用了这些免疫评分信息啊,比如:新鲜出炉(2021年6月)的文章:《Identification of a Ferroptosis- Related LncRNA Signature as a Novel Prognosis Model for Lung Adenocarcinoma》 ,就对比了 ESTIMATE, TIMER, MCP counter, CIBERSORTx,和ssGSEA ,如下所示:

    02
    领券