到底是什么在消耗CPU? 我开始考虑在同一台机器上运行的其他Wolfram云服务了,但看起来它们不像是会导致我们所看到的缓慢运行问题。但是想要简化系统的想法使我想把这些都删除。一开始,我隔离了生产集群上的一个节点,然后我建立了一个自己的Wolfram Private Cloud。但是缓慢运行的问题仍然存在,但令人疑惑的是,在不同时段和不同机器上,它们表现出了一些不同的特点。 在我的Private Cloud上,我可以登录Linux系统查看数据。我做的第一件事就是将 top 和 ps axl 的结果导入到Wo
linux的kernel内核外是系统调用,系统调用外是shell、库函数,而应用程序则在最外层
发音类似<砰>,对黑客而言,这就是成功实施黑客攻击的声音,砰的一声,被<黑>的电脑或手机就被你操纵了
| 导语本文主要是讲Linux的调度系统, 由于全部内容太多,分三部分来讲,本篇是中篇(主要讲抢占和时钟),上篇请看(CPU和中断):Linux调度系统全景指南(上篇),调度可以说是操作系统的灵魂,为了让CPU资源利用最大化,Linux设计了一套非常精细的调度系统,对大多数场景都进行了很多优化,系统扩展性强,我们可以根据业务模型和业务场景的特点,有针对性的去进行性能优化,在保证客户网络带宽前提下,隔离客户互相之间的干扰影响,提高CPU利用率,降低单位运算成本,提高市场竞争力。欢迎大家相互交流学习!
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该
库函数:库函数是语言或应用程序的一部分,可以运行在用户空间中。 系统调用:又称广义指令,它是由操作系统向程序提供的程序接口,而非直接向用户提供,用户只能通过程序间接的使用这些接口。
微服务治理中限流、熔断、降级是一块非常重要的内容。目前市面上开源的组件也不是很多,简单场景可以使用Guava,复杂场景可以选用Hystrix、Sentinel。今天要说的就是Sentinel,Sentinel是一款阿里开源的产品,只需要做较少的定制开发即可大规模线上使用。从使用感受上来说,它有以下几个优点:
Linux kernel 的 kretprobe 机制和 kprobe 完全不同,本质原因在于,函数的入口地址是固定的,但函数的返回地址不固定,由于返回位置不固定,无法固定函数大小,无法事先插桩。一图以示之:
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了?
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。同时,由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了要分析这个问题,理解JVM和操作系统之间的内存关系非常重要。接下来主要就Linux与JVM之间的内存关系进行一些分析。 一、Li
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。
引言 在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约600m,Linux自身使用大约800m。从表面上,物理内存
进程定义:所谓进程是由正文段(Text)、用户数据段(User Segment)以及系统数据段(System Segment)共同组成的一个执行环境。它代表程序的执行过程,是一个动态的实体。
Dubbox 是一个分布式服务框架,其前身是阿里巴巴开源项目Dubbo ,被国内电商及互联网项目中使用,后期阿里巴巴停止了该项目的维护,当当网便在Dubbo基础上进行优化,并继续维护,为了与原有的Dubbo区分,故将其命名为Dubbox。
推荐阅读 微服务: springboot系列教程学习 源码:Javaweb练手项目源码下载 调优:十五篇好文回顾 面试笔试:面试笔试整理系列 玩过Linux的人都会知道,Linux中的命令的确是非常多,但是玩过Linux的人也从来不会因为Linux的命令如此之多而烦恼,因为我们只需要掌握我们最常用的命令就可以了。当然你也可以在使用时去找一下man,他会帮你解决不少的问题。 然而每个人玩Linux的目的都不同,所以他们常用的命令也就差异非常大,而我主要是用Linux进行C/C++和shell程序编写的,所以常
Linux 内核提供了一个遵守上面语义的旗标实现, 尽管术语有些不同. 为使用旗标, 内核 代码必须包含 <asm/semaphore.h>. 相关的类型是 struct semaphore; 实际旗标可以用 几种方法来声明和初始化. 一种是直接创建一个旗标, 接着使用 sema_init 来设定它:
在进行堵塞式系统调用时。为避免进程陷入无限期的等待,能够为这些堵塞式系统调用设置定时器。Linux提供了alarm系统调用和SIGALRM信号实现这个功能。
线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
转载链接1:http://www.arrowapex.cn/archives/66.html
前言:在了解完冯诺依曼体系结构和操作系统之后,我们进入了Linux的下一篇章Linux进程,但在学习Linux进程之前,一定要阅读理解上一篇内容,理解“先描述,再组织”才能更好的理解进程的含义。
HZ定义在<asm/param.h>,在i386平台上,目前采用的HZ值是1000。
当需要一次执行多个命令的时候,可以同时输入,不同命令之间可以使用分号“;”隔开,示例如下:
在上一篇文章中我们了解到了命名空间和缺省函数的存在,以及C++为什么要引入它们。本章将继续C++在C语言上扩展出的语法,以帮助大家快速入门。函数竟然还有内联的形式?函数重载,重载的是什么?本篇文章都将会做讲解。
vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存、进程、CPU活动进行监控。是对系统的整体情况进行统计,不足之处是无法对某个进程进行深入分析。
vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况。这个命令是我查看Linux/Unix最喜爱的命令,一个是Linux/Unix都支持,二是相比top,我可以看到整个机器的CPU,内存,IO的使用情况,而不是单单看到各个进程的CPU使用率和内存使用率(使用场景不一样)。 选项 -a:显示活动内页; -f:显示启动后创建的进程总数; -m:显示slab信息; -n:头信息仅显示一次; -s:以表格方式显示事件计数器和内存状态; -d:报告磁盘状态; -p:显示指定的硬盘分区状态; -S:输出信息的单位。 vmstat 3 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 320 42188 167332 1534368 0 0 4 7 1 0 0 0 99 0 0 0 0 320 42188 167332 1534392 0 0 0 0 1002 39 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 19 1002 44 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 0 1002 41 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 0 1002 41 0 0 100 0 0 一般vmstat工具的使用是通过两个数字参数来完成的,第一个参数是采样的时间间隔数,单位是秒,第二个参数是采样的次数 r 表示运行队列(就是说多少个进程真的分配到CPU),我测试的服务器目前CPU比较空闲,没什么程序在跑,当这个值超过了CPU数目,就会出现CPU瓶颈了。这个也和top的负载有关系,一般负载超过了3就比较高,超过了5就高,超过了10就不正常了,服务器的状态很危险。top的负载类似每秒的运行队列。如果运行队列过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。 b 表示阻塞的进程,这个不多说,进程阻塞,大家懂的。 swpd 虚拟内存已使用的大小,如果大于0,表示你的机器物理内存不足了,如果不是程序内存泄露的原因,那么你该升级内存了或者把耗内存的任务迁移到其他机器。 free 空闲的物理内存的大小,我的机器内存总共8G,剩余3415M。 buff Linux/Unix系统是用来存储,目录里面有什么内容,权限等的缓存,我本机大概占用300多M cache cache直接用来记忆我们打开的文件,给文件做缓冲,我本机大概占用300多M(这里是Linux/Unix的聪明之处,把空闲的物理内存的一部分拿来做文件和目录的缓存,是为了提高 程序执行的性能,当程序使用内存时,buffer/cached会很快地被使用。) si 每秒从磁盘读入虚拟内存的大小,如果这个值大于0,表示物理内存不够用或者内存泄露了,要查找耗内存进程解决掉。我的机器内存充裕,一切正常。 so 每秒虚拟内存写入磁盘的大小,如果这个值大于0,同上。 bi 块设备每秒接收的块数量,这里的块设备是指系统上所有的磁盘和其他块设备,默认块大小是1024byte,我本机上没什么IO操作,所以一直是0,但是我曾在处理拷贝大量数据(2-3T)的机器上看过可以达到140000/s,磁盘写入速度差不多140M每秒 bo 块设备每秒发送的块数量,例如我们读取文件,bo就要大于0。bi和bo一般都要接近0,不然就是IO过于频繁,需要调整。 in 每秒CPU的中断次数,包括时间中断 cs 每秒上下文切换次数,例如我们调用系统函数,就要进行上下文切换,线程的切换,也要进程上下文切换,这个值要越小越好,太大了,要考虑调低线程或者进程的数目,例如在apache和nginx这种web服务器中,我们一般做性能测试时会进行几千并发甚至几万并发的测试,选择web服务器的进程可以由进程或者线程的峰值一直下调,压测,直到cs到一个比较小的值,这个进程和线程数就是比较合适的值了。系统调用也是,每次调用系统函数,我们的代码就会进入内核空间,导致上下文切换,这个是很耗资源
pam_tally2模块可于用于在对系统进行一定次数的失败ssh登录尝试后锁定用户
前面两篇文章我们总结了 Docker 背后使用的资源隔离技术 Linux namespace。 Docker 基础技术之 Linux namespace 详解 Docker 基础技术之 Linux namespace 源码分析 本篇将讨论另外一个技术——资源限额,这是由 Linux cgroups 来实现的。 cgroups 是 Linux 内核提供的一种机制,这种机制可以根据需求把一系列任务及子任务整合(或分隔)到按资源划分等级的不同组内,从而为系统资源管理提供一个统一的框架。(来自 《Docker
我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念。 物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space)。 作为物理内存的扩展,linux会在物理内存不足时,使用交换分区的虚拟内存,更详细的说,就是内核会将暂时不用的内存块信息写到交换空间,这样以来,物理内存得到了释放,这块内存就可以用于其它目的,当需要用到原始的内容时,这些信息会被重新从交换空间读入物理内存。 Linux的内存管理采取的是分页存取机制,为了保证物理内存能得到充分的利用,内核会在适当的时候将物理内存中不经常使用的数据块自动交换到虚拟内存中,而将经常使用的信息保留到物理内存。
上面是说的cgroups 是内核提供的功能,但现在我们在用户空间想使用的是cgroup的功能。其原理是:linux 内核有一个很强大的模块叫做VFS(vritual File System),VFS 把具体的文件系统的细节隐藏起来,给用户态进程提供一个完备的文件系统API接口。linux 也是通过VFS 把cgroups 功能暴漏给用户态进程的,cgroups 与VFS 之间的衔接部分叫做cgroups 文件系统。
Linux 命名空间是一种隔离机制,允许将全局系统资源划分为多个独立的、相互隔离的部分,使得在不同的命名空间中运行的进程感知不到其他命名空间的存在。从而实现了对进程、网络、文件系统、IPC(进程间通信)等资源的隔离,减少了潜在的安全风险。例如,在容器中运行应用程序可以避免对主机系统的直接影响,从而提高了系统的安全性。
一、通常服务器的性能会卡在三个地方: cpu 网络IO 磁盘IO 二、在优化性能的时候,首先要判断性能的瓶颈在上述的哪个地方。然后对症下药,按照下面的方法来优化: 1、提高CPU性能的方法 并发。利用多线程、进程。老的线程库效率太低,需要升级用nptl 。进(线)程数不要大于cpu个数 (请参考:http://www.ibm.com/developerworks/cn/linux/l-threading.html) 谨慎用锁。改善架构,尽量不用锁。 慎用字符串操作,比如sprintf,snprintf,因为
之前我写过一篇分析 O(1)调度算法 的文章:O(1)调度算法,而这篇主要分析 Linux 现在所使用的 完全公平调度算法。
本文介绍了分布式服务框架Dubbo的架构设计、原理、实现,以及如何利用Spring Boot和Zookeeper进行快速搭建和部署。通过Dubbo,开发者可以轻松地实现服务的高可用、高性能,并且可以方便地进行服务的扩展和调用。
进程是一个资源拥有者,因而在进程的创建、撤销和切换中,系统必须为之付出较大的时空开销。
APM,又称应用性能统计,主要用来跟踪请求调用链,每个环节调用耗时,为我们诊断系统性能、定位系统问题提供了极大便利。本系统采用的是Elastic Stack体系中的APM,主要是之前部门搞PCI认证,其中有一环ELK,而刚好ELK就是我搭建的,这里就顺便使用ELK体系的APM,没必要再另起一套了。
一、什么是进程 进程:正在进行的一个过程或者说一个任务。而负责执行任务则是cpu。 二、进程与程序的区别 程序:仅仅是一堆代 进程:是指打开程序运行的过程 三、并发与并行 并发与并行是指cpu运行多个程序的方式 不管是并行与并发,在用户看起来都是‘同时’运行的,他们都只是一个任务而已,正在干活的是cpu,而一个cpu只能执行一个任务。 并行就相当于有好多台设备,可以同时供好多人使用。 而并发就相当于只有一台设备,供几个人轮流用,每个人用一会就换另一个人。 所以只有多个cpu才能实现并行,而一个cpu只能实现
I/O基础 1、java1.4之前,java对I/O支持不完善,存在以下问题: 没有数据缓冲区,I/O性能存在问题。 没有C或者C++的channel概念,只有输入输出流。 同步式阻塞式I/O通信,通常会导致通信线程被长时间阻塞。 支持的字符集有限,硬件可移植性不好。 2、Linux网络I/O模型 Linux内核将所有外部设备都看作一个文件来操作,对文件的操作都会调用内核提供的系统命令,返回一个fd(文件描述符)。 描述符就是一个数字,它指向内核中的一个结构体(文件路径,数据区等属性)。 fd演示:
Cgroup 是 Linux kernel 的一项功能:它是在一个系统中运行的层级制进程组,你可对其进行资源分配(如 CPU 时间、系统内存、网络带宽或者这些资源的组合)。通过使用 cgroup,系统管理员在分配、排序、拒绝、管理和监控系统资源等方面,可以进行精细化控制。硬件资源可以在应用程序和用户间智能分配,从而增加整体效率。
在LINUX中,周期执行的任务一般由cron这个守护进程来处理[ps -ef|grep cron]。cron读取一个或多个配置文件,这些配置文件中包含了命令行及其调用时间。
容器其实就是一种沙盒技术,作为一个“盒子”可以把应用装起来,使得各个应用之间不相互干扰,并且被装进“盒子”的应用,可以很方便地搬来搬去。
1)master关闭持久化 原因很简单,因为无论哪种持久化方式都会影响redis的性能,哪一种持久化都会造成CPU卡顿,影响对客户端请求的处理。为了保证读写最佳性能,将master的持久化关闭!
最近,烦心事有点多,博客也像是进入了便秘期。虽然还远远不到说放弃的地步,但总有一种挤不出牙膏的郁闷感。很怀念前几个月的冲劲和激情,一天都能存好几篇优质草稿。 看来,张戈博客是首次进入瓶颈阶段了!没办法
什么是epoll epoll是什么?按照man手册的说法:是为处理大批量句柄而作了改进的poll。当然,这不是2.6内核才有的,它是在2.5.44内核中被引进的(epoll(4) is a new API introduced in Linux kernel 2.5.44),它几乎具备了之前所说的一切优点,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。 epoll的相关系统调用 epoll只有epoll_create,epoll_ctl,epoll_wait 3个系统调用。 1. int ep
经常有朋友问起软中断的问题... 话说我干了这么多年,还从未在VxWorks领域见过这个词儿,孤陋寡闻了
与任何操作系统一样,在运行 Linux 和相关应用程序时遇到问题并不罕见。在使用闭源程序时尤其如此,因为无法进行精细的代码检查。因此,排除故障和解决问题并不是一个简单的过程。Linux 管理员和工程师很快发现需要补充实用程序。值得庆幸的是,他们并没有等太久。
vmstat 命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,MEM内存使用,VMSwap虚拟内存交换情况,IO读写情况。
领取专属 10元无门槛券
手把手带您无忧上云