首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Deep Retinex Decomposition for Low-Light Enhancement

    Retinex模型是微光图像增强的有效工具。假设观测图像可以分解为反射率和光照。大多数现有的基于retinx的方法都为这种高度病态分解精心设计了手工制作的约束条件和参数,当应用于各种场景时,可能会受到模型容量的限制。在本文中,我们收集了一个包含低/正常光图像对的低光数据集(LOL),并提出了在该数据集上学习的深度视网膜网络,包括用于分解的解分解网和用于光照调整的增强网。在解压网络的训练过程中,分解的反射率和光照没有ground truth。该网络仅在关键约束条件下学习,包括成对低/正常光图像共享的一致反射率和光照的平滑度。在分解的基础上,通过增强网络对光照进行亮度增强,联合去噪时对反射率进行去噪操作。Retinex-Net是端到端可训练的,因此学习的分解本质上有利于亮度调整。大量实验表明,该方法不仅在弱光增强方面具有良好的视觉效果,而且能很好地表征图像的分解。

    02

    表达式树

    表达式树是一种C#中的数据结构,它以树的形式表示某些代码内部的结构。每个节点是一种称为表达式的C#对象,例如二元运算,方法调用,常量等。这种数据结构主要用于LINQ查询的内部机制和动态编程。在C#中,表达式树使在编译时表达式的结构和操作被保留下来,而不是像通常的.net代码那样被直接编译成IL。这使得你可以在运行时操作这些表达式或将它们转换成其他形式。例如,你可以将一个表达式树转换为可重用的Lambda表达式,或者用于创建动态查询。或者,你可以遍历表达式树来读取和解析表达式的结构。这种技术是.NET Framework中LINQ的基础,特别是在使用LINQ to SQL和LINQ to Entities时,因为它允许在运行时将LINQ查询表达式转换为SQL查询。

    02

    本质图像论文笔记

    之前相关人脸本质图像分解的工作都是在合成数据集中完成的, 但到真实的人脸,不同分布使得泛化效果很差,这篇论文的特色是提出了一种新的训练范式(SFS-supervision),从真实无标签的真实人脸数据中学习形状,反射以及光照,并且还提出了一种更强大的网络模型(SFS-Net)。 SFS-supervision分为以下三步: - a)先使用3DMM中合成的数据集训练SFS-Net; - b)然后用训练好的网络对真实的人脸数据集生成伪标签; - c)最后共同训练合成数据集以及带有伪标签的真实数据集。 直接对真实图像使用重建损失进行反向传播会使分解过程中各个组件发生崩溃而产生平凡解,这里的伪标签是很大程度上缓解这种情况的产生。 SFS-Net网络结构如下:

    03
    领券