1、自动增长字段: 自动增长型字段允许我们在向数据库添加数据时,不考虑主键的取值,记录插入后,数据库系统会自动为其分配一个值,确保绝对不会出现重复。这是我们设置主键的首选:
依托于互联网的发达,我们可以随时随地利用一些等车或坐地铁的碎片时间学习以及了解资讯。同时发达的互联网也方便人们能够快速分享自己的知识,与相同爱好和需求的朋友们一起共同讨论。
聊一个实际问题:淘宝的数据库,主键是如何设计的? 某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。其中,一个最明显 的错误就是关于MySQL的主键设计。
某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。其中,一个最明显的错误就是关于MySQL的主键设计。
很多小伙伴应该知道,在 MySQL 中主键不应该使用随机字符串。但是主键不用随机字符串用什么?主键自增?主键自增就是最佳方案吗?有没有其他坑?今天我们就来讨论下这个话题。
最近几篇文章,都是在和大家聊索引的问题,今天我们来看看前缀索引。 1.什么是前缀索引 所谓前缀索引说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时指定),这样建立起来的索引更小,所以查询更快。这有点类似于 Oracle 中对字段使用 Left 函数来建立函数索引,只不过 MySQL 的这个前缀索引在查询时是内部自动完成匹配的,并不需要使用 Left 函数。 那么为什么不对整个字段建立索引呢?一般来说使用前缀索引,可能都是因为整个字段的数据量太大,没有必要针对整个字段建立索引,前缀索引仅仅是选
UUID的方式能生成一串唯一随机32位长度数据,它是无序的一串数据,按照开放软件基金会(OSF)制定的标准计算,UUID的生成用到了以太网卡地址、纳秒级时间、芯片ID码和许多可能的数字。UUID的底层是由一组32位数的16进制数字构成,是故 UUID 理论上的总数为[1565060542.png] ,约等于[1565060554.png],也就是说若每纳秒产生1百万个 UUID,要花100亿年才会将所有 UUID 用完(100亿年啊,地球都没了),所以这足够我们的使用了,也能够保证唯一性。
最近的一个多月时间其实都在做数据库的迁移工作,我目前在开发的项目其实在上古时代是使用 MySQL 作为主要数据库的,后来由于一些业务上的原因从 MySQL 迁移到了 MongoDB,使用了几个月的时间后,由于数据库服务非常不稳定,再加上无人看管,同时 MongoDB 本身就是无 Schema 的数据库,最后导致数据库的脏数据问题非常严重。目前团队的成员没有较为丰富的 Rails 开发经验,所以还是希望使用 ActiveRecord 加上 Migration 的方式对数据进行一些强限制,保证数据库中数据的合法。
在MySQL中有一个UUID () 函数,通常用UUID做唯一标识,需要在数据库中进行存储。使用此函数可以让MySQL生成一个UUID值,并以VARCHAR(36)类型的可读形式返回。如图1:
在分布式环境下,如何对某对象做唯一标识是个很常规的问题。本文讨论几种常见做法,供大家参考。
表的主键指的针对一张表中的一列或者多列,其结果必须能标识表中每行记录的唯一性。InnoDB 表是索引组织表,主键既是数据也是索引。
其实 UUID 和自增主键 ID 是常用于数据库主键的两种方式,各自具有独特的优缺点。
在 MySQL 的开发规范中都会明确写着:MySQL InnoDB 表必须有主键,主键的选择建议:添加一个自增列作为主键,每一行的值删除后一般不会重用。但实质上, 业务开发中,还是会遇到 InnoDB 表无主键无索引的情况。
Hibernate的核心就是对象关系映射: 加载映射文件的两种方式: 第一种:<mapping resource="com/bie/lesson02/crud/po/employee.hbm.
Mybatis Plus 为我们提供了三种设置 主键生成策略的方式。它们的优先级顺序是:局部注解 > 全局 > 默认(雪花算法)。下面我们来一一介绍
通过annotation来映射hibernate实体的,基于annotation的hibernate主键标识为@Id, 其生成规则由@GeneratedValue设定的.这里的@id和@GeneratedValue都是JPA的标准用法, JPA提供四种标准用法,由@GeneratedValue的源代码可以明显看出.
首先,不管是不是分布式系统,都有 ID 唯一的使用场景。而在分布式场景下,对 ID 的唯一性要求更严格!
使用“COMB(Combine)”类型 COMB数据类型的基本设计思路是这样的:既然UniqueIdentifier数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么我们能不能通过组合的方式,保留UniqueIdentifier的前10个字节,用后6个字节表示GUID生成的时间(DateTime),这样我们将时间信息与UniqueIdentifier组合起来,在保留UniqueIdentifier的唯一性的同时增加了有序性,以此来提高索引效率。也许有人会担心UniqueIdentifier减少到10字节会造成数据出现重复,其实不用担心,后6字节的时间精度可以达到1毫秒,时间4095年,两个COMB类型数据完全相同的可能性是在这1毫秒内生成的两个GUID前10个字节完全相同,这几乎是不可能的!注意这16字节转化为16进制再转化为字符串存储时也是32字节。 首先,MySQL时间戳timestamp是采用int存储,4个字节,最多32位,可以从1970年1月1日00:00:00一直到2037年,精度为一秒,其值作为数字显示。 下面说明:6个字节的时间精度问题,6字节共48位
每周六晚上我们几个小伙伴都会组织一个技术研讨会,就技术群里大家提出的几个有意思的问题做重点的讨论。主持人采用轮流主持的模式,本周由我负责组织和分享,这篇文章就是我们当时研习小组讨论的纪要。想要加入的小伙伴可以看文章最末尾的广告时间。
设计表的时候,主键的选择,如果业务字段是bigint类型,可以含义不会改变,则可以用作主键;更普遍的做法是,选择单独的id字段作为表的主键(为了考虑后续水平扩展的需求,要求全局唯一,即用发号器获取);业务主键如果是字符串类型的,也不能作为表的逻辑主键使用,因为太占用空间、效率低。关于这个主题的探讨,可以参考:数据库的唯一标示符(ID)的选择 在Mybatis中,一般会将SQL语句以K-V对写在xxxMapper.xml文件中,关于$和#两种符号的区别:$符号表示MyBatis在动态替换过程中的字符串替换;
1.映射文件:User.hbm.xml <hibernate-mapping package="cn.vincent.pojo">
某天检查一位离职同事写的代码,发现其对应表虽然设置了AUTO_INCREMENT自增,但页面新增功能生成的数据主键很诡异,长度达到了19位,且并非是从1开始递增的——
🧑个人简介:大家好,我是 shark-Gao,一个想要与大家共同进步的男人😉😉
MySQL支持的数据类型非常多,选择正确的数据类型对于获得高性能至关重要。不管 存储哪种类型的数据,下面几个简单的原则都有助于做出更好的选择。
左边的数据表,一共有两列七条记录,最左边的是数据记录的物理地址。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值,和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在一定的复杂度内获取到对应的数据,从而快速检索出符合条件的记录。
UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以“-”连接符分为五段,形式为8-4-4-4-12的36个字符。
(下面这张图为计算机组成原理内容,每查询一次索引节点,都会进行一次磁盘IO读取,即要寻道和旋转)
系统唯一id是我们在设计阶段常常遇到的问题。在复杂的分布式系统中,几乎都需要对大量的数据和消息进行唯一标识。在设计初期,我们需要考虑日后数据量的级别,如果可能会对数据进行分库分表,那么就需要有一个全局唯一id来标识一条数据或记录。生成唯一id的策略有多种,但是每种策略都有它的适用场景、优点以及局限性。
最近在项目中用了UUID的方式生成主键,一开始只是想把这种UUID的方式生成主键记录下来,在查阅资料的过程中,又有了一些新的认识和思考。
业务量小于500W或数据容量小于2G的时候单独一个mysql即可提供服务,再大点的时候就进行读写分离也可以应付过来。但当主从同步也扛不住的时候就需要分表分库了,但分库分表后需要有一个唯一ID来标识一条数据,且这个唯一ID还必须有规则,能辅助我们解决分库分表的一些问题。
文章目录 1. Hibernate的基本配置 1.1. 核心配置文件(hibernate.cfg.xml) 1.1.1. 必须的配置(配置数据库信息) 1.1.2. 可选的配置 1.1.3. 实例 1.2. 映射关系文件 1.2.1. 作用 1.2.2. 缺点 1.2.3. 创建 1.2.4. 属性 1.2.5. 实例 1.2.6. 注意 1.3. SQL方言 1.3.1. 常用的方言(Mysql,Oracle) 1.4. 主键生成方式 1.4.1. 如何使用 1.4.2. 分类 1.4.3. 常见的分
waterline和Sails.js同一团队开发,支持几乎所有的主流数据库,是nodejs下一款非常强大的orm,可以显著提升开发效率 一.waterline支持的数据库 二.waterline的配置
关于MySQL的索引,曾经进行过一次总结,文章链接在这里 Mysql索引原理及其优化.
墨墨导读:本文为开发人员提供了一些MySQL相关的知识点,包括索引、事务、优化等,下面以问答形式形式呈现出来。
本文主要受众为开发人员,所以不涉及到MySQL的服务部署等操作,且内容较多,大家准备好耐心和瓜子矿泉水.
构建分布式系统时,如何对数据进行唯一标识也是一个至关重要的设计。不仅要符合B-tree数据结构以维持查询性能,还要考虑唯一标识的连续性会不会影响系统安全性。在分库分表的情况下,还要避免唯一标识重复且高效等等需要考虑的点。为此,市场就出现了很多分布式ID生成方案。本文将详细介绍九种主流的分布式ID生成策略供大家参考使用。
本套视频从Java基础到架构模式以及AI算法,整体视频以“碎片化”学习的模式,提供给大家 ,并配备实际项目为案例,让大家在坐车、吃饭、午休、蹲坑的时候,都可以学习到N个知识点,目前所有知识点将是免费观
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点
MySQL是一个强大的关系型数据库管理系统,用于存储和管理大量数据。在数据库中,主键约束是一项非常重要的概念,它有助于确保数据的完整性和唯一性。本文将详细介绍MySQL主键约束,包括什么是主键、为什么需要主键、如何创建主键以及主键的最佳实践。
Documents MongoDB 的文档可以理解为关系型数据库(Mysql)的一行记录 MongoDB 将数据记录为 BSON 格式的文档 BSON 是 JSON 文档的二进制表示,但它支持的数据类
主键的设计最好不要与业务逻辑有所关联,主键最后是一串毫无意义,独立不重复的数字,比如:UUID,Auto_increment,又或者是雪花算法生成的主键等等
近来公司需要构建一套 EMM(Enterprise Mobility Management)的管理平台,就这种面向企业的应用管理本身需要考虑的需求是十分复杂的,技术层面管理端和服务端构建是架构核心,客户端本身初期倒不需要那么复杂,作为~~移动端的负责人~~(其实也就是一个打杂的小组长),这个平台架构我自然是免不了去参与的,作为一个前端 jser 来公司这边总是接到这种不太像前端的工作,要是以前我可能会有些抵触这种业务层面需要考虑的很多,技术实现本身又不太容易积累技术成长的活。这一年我成长了太多,总是尝试着去做一些可能自己谈不上喜欢但还是有意义的事情,所以这次接手这个任务还是想好好把这个事情做好,所以想考虑参与到 EMM 服务端构建。其实话又说回来,任何事只要想去把它做好,怎么会存在有意义还是没意义的区别呢?
分布式数据库架构下,索引的设计也需要做调整,否则无法充分发挥分布式架构线性可扩展的优势。今天我们就来聊聊 “在分布式数据库架构下,如何正确的设计索引?”
数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询,更新数据库中表的数据。索引的实现通常使用B树和变种的B+树(MySQL常用的索引就是B+树)。除了数据之外,数据库系统还维护为满足特定查找算法的数据结构,这些数据结构以某种方式引用数据,这种数据结构就是索引。简言之,索引就类似于书本,字典的目录。
在设计好表结构之后, 就需要进行物理设计, 将实体及属性映射到具体表和列. 而合理选择存储引擎和列类型也是数据库设计十分重要的一个环节.
领取专属 10元无门槛券
手把手带您无忧上云