上节课我们给大家介绍了常用的MySQL多表联合查询用法,知道了left join /right join /inner join 的基本用法。具体请回顾关于MySQL多表联合查询,你真的会用吗?本节课我们继续展开讲讲MySQL多表联合查询的其他用法——全连接与笛卡尔连接。
介绍使用索引、临时表 + 文件排序实现 group by,以及单独介绍临时表的三篇文章中,多次以 count(distinct) 作为示例说明。
其实我们之前所讲的回表,就是两个索引树同时使用,先在二级索引树中搜索到对应的主键值,然后在再去主键索引树中查询完整的记录。 但是我今天的问题是,两个不同的二级索引树,会同时生效吗?理论上来说,应该是可以同时生效的,不然这个 MySQL 也太笨了。不过根据松哥日常开发经验,这种事情最好能够避免,如果发生了同时搜索两棵索引树的事情,大概是你的索引设计有问题,此时就要去检查一下索引的设计是否合理。 加粗的是实践经验,但是对于两个索引同时生效的知识点,我们还是要懂,一起来看下。 1. 索引合并 例如我有如下一张表结
以连载的方式,记录自己学习数据分析的所想所得,共勉,不定期发布。如果文章内容有用,请你分享给有需要的朋友,谢谢支持。
数据库如何判定,当前这一条记录是重复的?先查找,再插入。但是加上约束之后,数据库的执行过程可能就变了。因此执行时间或者效率会受到很大影响。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
之前我们给大家介绍过MySQL子查询与多表联合查询 MySQL子查询的基本使用方法(四)、关于MySQL多表联合查询,你真的会用吗?、关于MySQL内连接与外连接用法,全都在这里了!本节课我们想讲讲多表联查询与子查询的区别与联系。
| 作者 肖泽凡,腾讯TEG研发管理部小小后台攻城狮一枚,负责腾讯敏捷产品研发平台TAPD的基础功能的开发和维护,热爱技术,喜欢分享,文章首次发表于SegmentFault,博客名“X先生”,欢迎与我交流~ ---- 在数据库中join操作被称为连接,作用是能连接多个表的数据(通过连接条件),从多个表中获取数据合并在一起作为结果集返回给客户端。例如: 表A: idnameage1A182B193C20 表B: iduidgender11F22M 通过连接可以获取到合并两个表的数据: select A
一条查询语句在经过MySQL查询优化器的各种基于成本和规则的优化会后生成一个所谓的执行计划,这个执行计划展示了接下来具体执行查询的方式,比如多表连接的顺序是什么,对于每个表采用什么访问方法来具体执行查询等等。设计MySQL的大叔贴心的为我们提供了EXPLAIN语句来帮助我们查看某个查询语句的具体执行计划,本章的内容就是为了帮助大家看懂EXPLAIN语句的各个输出项都是干嘛使的,从而可以有针对性的提升我们查询语句的性能。
表的生成参考《 3. SQL–数据库基础查询操作》。 前几节所总结的查询,都是基于单张表格进行的,如果单张表格的信息不足以达到查询的目的,就需要将他们组合到一起形成多张表格。
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
多表查询是指基于两个和两个以上的表查询.在实际应用中,查询单个表可能不能满足你的需求.
我试图在MariaDB(MySQL)上运行一个简单的连接查询,但性能简直糟糕透了。下面将介绍我是如何通过两个简单的Unix命令,将查询时间从380小时降到12小时以下的。
“你一定又写了烂SQL了!”,“你怎么这样凭空污人清白……慢查询,慢查询不能算烂……慢查询!……程序猿的事,能算烂么?” 本文从SQL执行效率方面略作研究,偏向基础性总结,但力求详实准确。如果有大佬误入此地,还请从容撤退,如果你真的愿意看,我也没什么意见。
前面说了semi-join,这个是在where或者on语句后面,in里面,并且外层的条件必须用and与子查询连接,semi-join的作用就是,不管子查询有多少条数据返回,都不管,外层都只查询出来外层表数据,如果不符合条件,可以用物化表或者in变exists方法优化。还有派生表查询,可以内外合并,不行的话就物化查询。
ClickHouse应用于OLAP(在线分析处理)领域,具体来说满足如下特点使用此技术比较合适:
千万不要在docker里装mysql,因为docker容器停了以后,里面的数据就没有了,即使有一些操作可以使得docker映射到操作系统上,但是还是十分不建议用docker存数据、日志等,因为你能保证你就配置的没问题吗。
1. 之前我们所学的都是DDL语句,接下来所学的才是真正的DML语句。 插入数据的sql语句就是insert into table_name (column1, column2, ……) values (data1, data2, ……),values左边的括号不加时,默认代表对表的所有列进行插入,不忽略任何一列,加上括号时,可以自己指定某些列进行插入,但值得注意的是如果某些列没有default约束,你还将其忽略进行数据插入的话,则插入数据的操作一定会失败。values右边的括号个数表示向表中插入几行的数据,括号中用逗号分隔开来的数据分别一 一对应表中的列字段。
本文想和大家来聊聊Mysql中的执行计划,一条SQL语句经过了查询优化器模块分析后,会得到一个执行计划,通过这个执行计划,我们可以知道该条SQL语句具体采用的多表连接顺序是什么,对于每个表具体采用的访问方法是什么 . . .
最近遇到一个业务需求,要统计一张mysql大表每天/每周/每月的记录量(该表每天产生的记录量在好几百万)。当然有朋友会说,select count(1) from xxx 不就完事了吗?
最近在进行数据逆向分析,无业务无界面无数据库的情况下,想通过对存储过程中关于输出输入表的分析快速了解业务的核心问题,然后再对核心业务进行逆向回溯。
说明2:as dept_name 是给dept.name 起的别名,防止查询结果中出现两个name字段,会有歧义
写在前面: 博主是一名大数据的初学者,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/ 尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一天的生活就是一生的缩影。
导读:今天很高兴能与大家分享字节数据平台在实时数仓中的一些实践。目前在数据湖和Hudi相关的一些基本技术原理方面社区已有较多的介绍,所以我们今天的分享主要聚焦于实践部分的内容。
前文已经描述过MySQL的多种优化措施,如:回表的优化、索引合并的优化、连接的优化等
2、语法:select distinct from 表名; 去掉重复项,对应的字段前加符号表达:
这个sql的执行步骤如下: 1、查询出来d表中的某个id字段包含多个id值的所有的数据(因为此表是1-n的关系,所以需要去重,仅需要拿到不重复的id才可以继续下一个步骤);可以看到此步骤我把查询出来的多个值的结果给生成的了一个子表名为sss;
首先看下数仓架构。数仓的数据接入主要有两个来源,一个是客户端的上报,还有一个是业务后台 DB 的上报,这两份数据都会通过一个消息队列接入数仓。我们的数据仓库采用lambda架构,总体分为离线和实时两套体系,分别有自己的计算和存储体系。离线主要是以 Hive 作为存储载体,计算以 Spark 为主,Map Reduce为辅。实时数据处理主要用了 Flink,再辅以Kafka和OLAP。
数据库优化是一个很常见的面试题,下面就针对这一问题详细聊聊如何进行索引与sql的分析与优化。
在压测完成后,拿到压测过程中系统的慢SQL,发现其中一条慢SQL如下:的执行计划如下:
前言:在当前的数据分析岗位中,多数人在做着SQL-Boy\SQL-Girl的工作,在数据分析面试中,SQL是必不可少的一环,对于SQL不仅有常见函数用法的考察,更多时候面试官喜欢出一些编程类题目,本文我们来了解一下那些典型的SQL面试题。(文中的问题均以MySQL为例)
网上对这些数据库介绍有些误导,流传各种说法,比如:流传OB基于MySQL、GaussDB 200/300 和openGauss有啥区别,没办法谁让当前国产数据库太多...
指出MySQL能使用哪个索引在表中找到记录,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用(该查询可以利用的索引,如果没有任何索引显示 null)
反应式编程在客户端编程当中的应用相当广泛,而当前在服务端中的应用相对被提及较少。本篇将介绍如何在服务端编程中应用响应时编程来改进数据库操作的性能。
摘要 本篇文章出自七牛云和 PingCAP 联合主办的架构师实践日上,来自 PingCAP 的开发工程师李霞分享的《 TiDB 原理与实战》的演讲,介绍了目前分布式数据库行业的现状,分享了 TiDB
书接上回,今天放出第一章节的第二部分,我专门新建了一个专辑方便大家回看,传送: ClickHouse实战系列课程
先看看具体有哪些字段: mysql> EXPLAIN SELECT 1; 其实除了以SELECT开头的查询语句,其余的DELETE、INSERT、REPLACE以及UPDATE语句前边都可以加上EXPLAIN这个词儿,用来查看这些语句的执行计划 建两张测试表: CREATE TABLE t1 ( id INT NOT NULL AUTO_INCREMENT, key1 VARCHAR(100), key2 VARCHAR(100), key3 VARCHAR(100),
点击关注公众号,Java干货及时送达 这是一条标准的查询语句: 这是我们实际上SQL执行顺序: 我们先执行from,join来确定表之间的连接关系,得到初步的数据 where对数据进行普通的初步的筛选 group by 分组 各组分别执行having中的普通筛选或者聚合函数筛选。 然后把再根据我们要的数据进行select,可以是普通字段查询也可以是获取聚合函数的查询结果,如果是集合函数,select的查询结果会新增一条字段 将查询结果去重distinct 最后合并各组的查询结果,按照order by的条
MySQL 8.0 最新小版本(8.0.31)支持标准SQL 的intersect(交集)和except(差集)操作。
说明:上述多表查询中出现的问题称为:笛卡尔积的错误,结果是将每个员工分配了所有的部门所产生的
create database <dbname> 创建名字为dbname的数据库
作为一名数据分析师,平常用的最多的工具是SQL(包括MySQL和Hive SQL等)。对于存储在数据库中的数据,自然用SQL提取会比较方便,但有时我们会处理一些文本数据(txt,csv),这个时候就不太好用SQL了。Python也是分析师常用的工具之一,尤其pandas更是一个数据分析的利器。虽然二者的语法,原理可能有很大差别,但在实现的功能上,他们有很多相通的地方,这里特进行一个总结,方便大家对比学习~
今天早上看到同事的一个优化需求,优化的时间其实不多,但是对于这条SQL的优化思考了很多,希望有一些参考。
3,group by:将取出的一条条数据进行分组,如果没有group by,则整体作为一组
服务框架的功能侧重点往往不尽相同,因而大家也会用各种大同小异的名称来称呼这类服务,比如数据传输服务,数据采集服务,数据交换服务等等
官方网站:https://clickhouse.com/docs/zh/engines/table-engines/
数据库到底有多重要?作为数据分析人员需要懂点数据库,作为开发者需要懂点数据库,作为行业从业者,或者一个专业从事运维的DBA,更是要对数据库了如指掌。 这次我尝试着写了9道常见的MySQL面试题,内容主要从面试角度出发,会涉及比较多很重要的基础知识,对于这类知识,不仅仅要知道,还要能够讲清楚,不够熟悉的小白可以查缺补漏,足够资深的大牛也可以看看对这些知识有没有烂熟于心。如果不知道嘛……出门别说自己是DBA…… 1 关系型数据库和非关系型数据库区别 非关系型数据库(感觉翻译不是很准确)称为 NoSQL,也
管控面可以提供高可靠高效可持续运维保障、快速部署小时交付的能力,尤其是针对ClickHouse这种运维较弱但是性能很高的OLAP核心引擎,管控面就显示得尤其重要。
group查询就是分组查询,为什么要分组查询?因为我们想按某个维度进行统计。下面来看个图:
高内聚、低耦合是软件设计的常见概念,特别是在软件模块划分中会被常常提起,需要将功能相同的内聚在一起,将职责不同的功能解耦, 比喻说常见的MVC 分层模式,每一层负责单独的功能。高内聚、低耦合可以使得软件模块职责划分清晰,后期扩展性强,便于维护。
领取专属 10元无门槛券
手把手带您无忧上云