首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

mysql 天表数据合并

基础概念

MySQL中的天表(Temporal Table)是一种用于记录历史数据的表,通常包含有效时间和失效时间两个字段。这种表结构可以方便地查询某个时间点的数据状态,适用于需要追踪数据变更历史的场景。

相关优势

  1. 历史数据追踪:可以轻松查询某个时间点的数据状态。
  2. 数据一致性:通过有效时间和失效时间的控制,确保数据的一致性。
  3. 简化查询:查询历史数据时不需要复杂的JOIN操作。

类型

  1. 系统版本表(System-Versioned Table):MySQL 8.0引入的新特性,通过ALTER TABLE语句启用。
  2. 手动维护的天表:开发者手动创建和维护有效时间和失效时间字段。

应用场景

  1. 金融系统:记录账户余额的历史变动。
  2. 电商系统:记录商品价格和库存的历史变动。
  3. 用户管理系统:记录用户信息和权限的历史变动。

数据合并问题

假设我们有两个天表table_Atable_B,它们记录了相同类型的数据,但时间范围不同。我们需要将这两个表的数据合并成一个新的天表table_merged

问题描述

在合并过程中可能会遇到以下问题:

  1. 数据冲突:两个表中同一时间点的数据不一致。
  2. 时间范围重叠:两个表的时间范围有重叠部分。
  3. 性能问题:大数据量的合并操作可能导致性能瓶颈。

解决方案

  1. 数据冲突解决
    • 可以通过时间戳和业务逻辑来决定哪个数据更准确。
    • 例如,优先选择最新的数据。
代码语言:txt
复制
INSERT INTO table_merged (id, data, valid_from, valid_to)
SELECT 
    COALESCE(table_A.id, table_B.id) AS id,
    COALESCE(table_A.data, table_B.data) AS data,
    GREATEST(table_A.valid_from, table_B.valid_from) AS valid_from,
    LEAST(table_A.valid_to, table_B.valid_to) AS valid_to
FROM 
    table_A
FULL OUTER JOIN 
    table_B
ON 
    table_A.id = table_B.id
    AND table_A.valid_from <= table_B.valid_to
    AND table_A.valid_to >= table_B.valid_from;
  1. 时间范围重叠处理
    • 可以通过更新valid_to字段来处理重叠部分。
代码语言:txt
复制
UPDATE table_merged
SET valid_to = LEAST(table_A.valid_to, table_B.valid_to)
WHERE 
    id IN (
        SELECT id 
        FROM table_A 
        FULL OUTER JOIN table_B 
        ON table_A.id = table_B.id 
        AND table_A.valid_from <= table_B.valid_to 
        AND table_A.valid_to >= table_B.valid_from
    );
  1. 性能优化
    • 可以通过分批处理和索引优化来提高合并操作的性能。
    • 使用EXPLAIN分析查询计划,优化索引。
代码语言:txt
复制
-- 创建索引
CREATE INDEX idx_valid_from ON table_A(valid_from);
CREATE INDEX idx_valid_to ON table_B(valid_to);

-- 分批处理
SET @batch_size = 1000;
SET @offset = 0;

WHILE @offset < (SELECT COUNT(*) FROM table_A FULL OUTER JOIN table_B ON table_A.id = table_B.id) DO
    INSERT INTO table_merged (id, data, valid_from, valid_to)
    SELECT 
        COALESCE(table_A.id, table_B.id) AS id,
        COALESCE(table_A.data, table_B.data) AS data,
        GREATEST(table_A.valid_from, table_B.valid_from) AS valid_from,
        LEAST(table_A.valid_to, table_B.valid_to) AS valid_to
    FROM 
        table_A
    FULL OUTER JOIN 
        table_B
    ON 
        table_A.id = table_B.id
        AND table_A.valid_from <= table_B.valid_to
        AND table_A.valid_to >= table_B.valid_from
    LIMIT @batch_size OFFSET @offset;
    
    SET @offset = @offset + @batch_size;
END WHILE;

参考链接

通过以上方法,可以有效地解决MySQL天表数据合并过程中遇到的问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Hive 整体介绍

    Hive可以管理HDFS中的数据,可以通过SQL语句可以实现与MapReduce类似的同能,因为Hive底层的实现就是通过调度MapReduce来实现的,只是进行了包装,对用户不可见。         Hive对HDFS的支持只是在HDFS中创建了几层目录,正真的数据存在在MySql中,MYSQL中保存了Hive的表定义,用户不必关系MySQL中的定义,该层对用户不可见。Hive中的库在HDFS中对应一层目录,表在HDFS中亦对应一层目录,如果在对应的表目录下放置与表定义相匹配的数据,即可通过Hive实现对数据的可视化及查询等功能         综上所述,Hive实现了对HDFS的管理,通过MySQL实现了对HDFS数据的维度管理         Hive基本功能及概念             database             table             外部表,内部表,分区表         Hive安装             1. MySql的安装(密码修改,远程用户登陆权限修改)             2. Hive安装获取,修改配置文件(HADOOP_HOME的修改,MySQL的修改)             3. 启动HDFS和YARN(MapReduce),启动Hive         Hive基本语法:             1. 创建库:create database dbname             2. 创建表:create table tbname                 Hive操作:             1. Hive 命令行交互式             2. 运行HiveServer2服务,客户端 beeline 访问交互式运行             3. Beeline 脚本化运行                 3.1 直接在 命令行模式下 输入脚本命令执行(比较繁琐,容易出错,不好归档)                 3.2 单独保存SQL 命令到 文件,如etl.sql ,然后通过Beeline命令执行脚本         数据导入:             1. 本地数据导入到 Hive表 load data local inpath "" into table ..             2. HDFS导入数据到 Hive表 load data inpath "" into table ..             3. 直接在Hive表目录创建数据         Hive表类型:             1. 内部表: create table 表数据在表目录下,对表的删除会导致表目录下的数据丢失,需要定义表数据的分隔符。             2. 外部表: create external table 表目录下挂载表数据,表数据存储在其他HDFS目录上,需要定义表数据的分隔符。             3. 分区表:与创建内部表相同,需要定义分区字段及表数据的分隔符。在导入数据时需要分区字段,然后会在表目录下会按照分区字段自动生成分区表,同样也是按照目录来管理,每个分区都是单独目录,目录下挂载数据文件。             4. CTAS建表         HQL             1. 单行操作:array,contain等             2. 聚合操作:(max,count,sum)等             3. 内连接,外连接(左外,右外,全外)             4. 分组聚合 groupby             5. 查询 : 基本查询,条件查询,关联查询             6. 子查询:                 当前数据源来源于 另个数据执行的结果,即当前 table 为临时数据结果             7. 内置函数: 转换, 字符串, 函数                 转换:字符与整形,字符与时间,                 字符串:切割,合并,                 函数:contain,max/min,sum,             8. 复合类型                 map(key,value)指定字符分隔符与KV分隔符                 array(value)指定字符分隔符                 struct(name,value) 指定字符分割与nv分隔符             9. 窗口分析函数             10. Hive对Json的支持

    01

    第二章《数据库的基本操作》

    一、mysql默认安装的4个库: 1.information_schema:保存关于mysql服务器所维护的所有的其他数据库的信息,例如:数据库名、数据库中的表名; 2.mysql:记录数据库用户,权限,关键字等。mysql自己需要使用的控制和管理信息; 3.performance_schema:5.5版本新增一个库,用于手机服务器性能参数,且该库中所有的表的存储引擎均为performance_schema; 4.test:测试库,所有用户再test库里都有root权限(一般不会存储有用的信息再test库里) 二.1.创建数据库:create database databasename; databasename是指数据库名称 2.移动到指定的数据库里:use databasename; 3.删除数据库:drop database databasename; 其它用法 1、使用SHOW语句找出在服务器上当前存在什么数据库: mysql> SHOW DATABASES; 2、创建一个数据库MYSQLDATA mysql> CREATE DATABASE MYSQLDATA; 3、选择你所创建的数据库 mysql> USE MYSQLDATA; (按回车键出现Database changed 时说明操作成功!) 4、查看现在的数据库中存在什么表 mysql> SHOW TABLES; 5、创建一个数据库表 mysql> CREATE TABLE MYTABLE (name VARCHAR(20), sex CHAR(1)); 6、显示表的结构: mysql> DESCRIBE MYTABLE; 7、往表中加入记录 mysql> insert into MYTABLE values (”hyq”,”M”); 8、用文本方式将数据装入数据库表中(例如D:/mysql.txt) mysql> LOAD DATA LOCAL INFILE “D:/mysql.txt” INTO TABLE MYTABLE; 9、导入.sql文件命令(例如D:/mysql.sql) mysql>use database; mysql>source d:/mysql.sql; 三,数据库的存储引擎: 1.什么是存储引擎:数据库的存储引擎是数据库的底层软件组件,数据库管理系统(Dbms)就是依赖存储引擎来对数据表进行创建,查询,更新和删除操作的。不同的存储引擎提供了不同的存储机制,索引技巧和锁定水平等功能。还可以获得某些特定的功能。现在不同的数据库的管理系统都支持多种不同的存储引擎。mysql的核心就是存储引擎。 2.MySQL的存储引擎,包括处理事务安全表的引擎和处理非事务安全表的引擎。在MySQL中不需要所有的表都使用同一种引擎,针对具体的需求每一张表都可以选择不同的存储引擎。 MySQL5.5支持的存储引擎有:InnoDB,MyiSAM,Memory,CVS等。 查看mysql中所有的存储引擎的命令:show engines\G Engine: PERFORMANCE_SCHEMA #引擎名称 Support: YES #mysql是否支持这种引擎 Comment: Performance Schema #mysql对它的评价 Transactions: NO #是否支持事务 XA: NO #是否支持事务的分布式 Savepoints: NO #事务的保存点 1.myisam存储引擎的特点: (1)myisam引擎读取速度快,占用资源少,不支持事务,不支持外键约束,但支持全文索引 (2)读写相互阻塞,也就是说读数据的时候就不能写数据,写数据的时候就不能读数据; (3)myisam引擎只能缓存索引,而不能缓存数据; (4)mysql5.5之前的默认引擎。 使用场景: (1)不需要事务支持的业务,例如银行转账就不适合用myisam引擎; (2)适用于读数据比较多的业务,不适用于读写频繁的业务; (3)并发相对较低的业务(纯读或者纯写的高并发也可以),数据修改相对较少的业务; (4)硬件资源比较差的机器可以考虑多使用myisam引擎。 2.InnoDB存储引擎的特点: (1)事物类数据表的首选引擎,支持事物安全表,支持行级别锁定和外键,mysql5.5之后的默认引擎; (2)具有提交,回滚和崩溃恢复能力的事物安全存储引擎,能处理巨大的数据量,性能及效率高,完全支持外键完整约束条件; (3)具有非常高的效的缓存特性,能缓存索引也能缓存数据,对硬件要求高, (4)使用InnoDB时,将在mysql数据目录创建一个名为ibdata的10M带大小的自动扩展文件,以及两个名为ib_logfile0和ib_logfile1的5M带大小的日志文件。 使用场景:

    03

    第二章《数据库的基本操作》

    一、mysql默认安装的4个库: 1.information_schema:保存关于mysql服务器所维护的所有的其他数据库的信息,例如:数据库名、数据库中的表名; 2.mysql:记录数据库用户,权限,关键字等。mysql自己需要使用的控制和管理信息; 3.performance_schema:5.5版本新增一个库,用于手机服务器性能参数,且该库中所有的表的存储引擎均为performance_schema; 4.test:测试库,所有用户再test库里都有root权限(一般不会存储有用的信息再test库里) 二.1.创建数据库:create database databasename; databasename是指数据库名称 2.移动到指定的数据库里:use databasename; 3.删除数据库:drop database databasename; 其它用法 1、使用SHOW语句找出在服务器上当前存在什么数据库: mysql> SHOW DATABASES; 2、创建一个数据库MYSQLDATA mysql> CREATE DATABASE MYSQLDATA; 3、选择你所创建的数据库 mysql> USE MYSQLDATA; (按回车键出现Database changed 时说明操作成功!) 4、查看现在的数据库中存在什么表 mysql> SHOW TABLES; 5、创建一个数据库表 mysql> CREATE TABLE MYTABLE (name VARCHAR(20), sex CHAR(1)); 6、显示表的结构: mysql> DESCRIBE MYTABLE; 7、往表中加入记录 mysql> insert into MYTABLE values (”hyq”,”M”); 8、用文本方式将数据装入数据库表中(例如D:/mysql.txt) mysql> LOAD DATA LOCAL INFILE “D:/mysql.txt” INTO TABLE MYTABLE; 9、导入.sql文件命令(例如D:/mysql.sql) mysql>use database; mysql>source d:/mysql.sql; 三,数据库的存储引擎: 1.什么是存储引擎:数据库的存储引擎是数据库的底层软件组件,数据库管理系统(Dbms)就是依赖存储引擎来对数据表进行创建,查询,更新和删除操作的。不同的存储引擎提供了不同的存储机制,索引技巧和锁定水平等功能。还可以获得某些特定的功能。现在不同的数据库的管理系统都支持多种不同的存储引擎。mysql的核心就是存储引擎。 2.MySQL的存储引擎,包括处理事务安全表的引擎和处理非事务安全表的引擎。在MySQL中不需要所有的表都使用同一种引擎,针对具体的需求每一张表都可以选择不同的存储引擎。 MySQL5.5支持的存储引擎有:InnoDB,MyiSAM,Memory,CVS等。 查看mysql中所有的存储引擎的命令:show engines\G Engine: PERFORMANCE_SCHEMA #引擎名称 Support: YES #mysql是否支持这种引擎 Comment: Performance Schema #mysql对它的评价 Transactions: NO #是否支持事务 XA: NO #是否支持事务的分布式 Savepoints: NO #事务的保存点 1.myisam存储引擎的特点: (1)myisam引擎读取速度快,占用资源少,不支持事务,不支持外键约束,但支持全文索引 (2)读写相互阻塞,也就是说读数据的时候就不能写数据,写数据的时候就不能读数据; (3)myisam引擎只能缓存索引,而不能缓存数据; (4)mysql5.5之前的默认引擎。 使用场景: (1)不需要事务支持的业务,例如银行转账就不适合用myisam引擎; (2)适用于读数据比较多的业务,不适用于读写频繁的业务; (3)并发相对较低的业务(纯读或者纯写的高并发也可以),数据修改相对较少的业务; (4)硬件资源比较差的机器可以考虑多使用myisam引擎。 2.InnoDB存储引擎的特点: (1)事物类数据表的首选引擎,支持事物安全表,支持行级别锁定和外键,mysql5.5之后的默认引擎; (2)具有提交,回滚和崩溃恢复能力的事物安全存储引擎,能处理巨大的数据量,性能及效率高,完全支持外键完整约束条件; (3)具有非常高的效的缓存特性,能缓存索引也能缓存数据,对硬件要求高, (4)使用InnoDB时,将在mysql数据目录创建一个名为ibdata的10M带大小的自动扩展文件,以及两个名为ib_logfile0和ib_logfile1的5M带大小的日志文件。 使用场景:

    01

    一位Java工程师的阶段性工作总结

    1.1.1、通常的模块分布:一般如果你要实现一个web应用,你从后台将数据展示到前端页面,在一个比较大的公司,你少不了跟其他项目有交集(你调用他的接口,他依赖你的接口),这样下来,整个公司有很多个模块,怎么做到很好的联系。回到刚刚的模块分布,你的一个web应用,应当需要分成三个模块:core模块、service模块、web模块。web模块就是展示到页面,后台代码而言主要就controller层了,其他逻辑基本都放在core了,service模块就是一些接口类和参数dto等等,接口的实现类在core模块。这样下来,web模块只需要依赖service模块,同样的其他系统依赖你的接口也仅仅是依赖service模块,然后利用远程调用方式消费你的接口服务。

    01
    领券