前段时间笔者开发某个项目遇到了MySQL性能问题,每张表的数据量都在五千万以上,个别表数据量甚至在一个亿以上,在开发的过程中遇到了非常多的数据库性能优化难点,笔者在开发过程中查询了很多资料,很多查询语句也在优化过程中取得了比较好的效果。笔者也将开发过程中遇到的sql优化问题总结为文章,以便日后回顾。这篇文章主要讲解mysql执行联结运算的原理。为了避免泄露公司业务及数据,在文章中涉及的sql语句都和公司业务无关。
说起MySQL的查询优化,相信大家收藏了一堆奇淫技巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
你是否真的理解这些优化技巧?是否理解它背后的工作原理?在实际场景下性能真有提升吗?我想未必。
MySQL是目前业界最为流行的关系型数据库之一,而索引的优化也是数据库性能优化的关键之一。所以,充分地了解MySQL索引有助于提升开发人员对MySQL数据库的使用优化能力。
B Tree指的是Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层,如下:
在 MySQL 中,建表时一般都会要求有主键。若要求不规范难免会出现几张无主键的表,本篇文章让我们一起揪出那个无主键的表。
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
在mysql中,索引就是帮助mysql快速找到某条数据的一种数据结构,它是排好序的,独立于mysql表数据之外的。
本来这篇文章我前两个星期就打算写了,提纲都列好了,但是后面我去追《漫长的季节》这部剧去了,这就花了一个周末的时间,再加上后面一些其它的事,导致没来得及写
在群里看到有小伙伴面试时,被问到 MySQL 该怎么优化的问题,不知道该如何回答。
目录 1.何种查询支持索引? 2.注意事项和建议 一 何种查询支持索引? 1 MySQL 目前支持前导列 ---- 就目前来说,mysql 暂时只支持最左前缀原则进行筛选。 例子:创建复合索引 cre
在系统性能问题中,数据库往往是性能的瓶颈关键因素。那么如何去检测mysql的性能问题,如何构建高性能的mysql,如何编写出高性能的sql语句?为此,整理一些建议。
MySQL是目前业界最为流行的关系型数据库之一,而索引的优化也是数据库性能优化的关键之一。所以,充分地了解MySQL索引有助于提升开发人员对MySQL数据库的使用优化能力。 MySQL的索引有很多种类型,可以为不同的场景提供更好的性能。而B-Tree索引是最为常见的MySQL索引类型,一般谈论MySQL索引时,如果没有特别说明,就是指B-Tree索引。本文就详细讲解一下B-Tree索引的的底层结构,使用原则和特性。 为了节约你的时间,本文的主要内容如下:
说起MySQL的查询优化,相信大家积累一堆技巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?
如果能在头脑中构建一幅MySQL各组件之间如何协同工作的架构图,有助于深入理解MySQL服务器。下图展示了MySQL的逻辑架构图。
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
前言 说起MySQL的查询优化,相信大家收藏了一堆:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原理? 在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。 一、MySQL逻辑架构 如果能在头脑中构建一幅MySQL各组件之间如何协同工作的架构图,有助于深入理解MySQL服务器。下图展示了MySQL的逻辑架构图。
说起 MySQL 的查询优化,相信大家收藏了一堆奇技淫巧:不能使用 SELECT *、不使用 NULL 字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
说起MySQL的查询优化,相信大家积累一堆技巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
原文:www.jianshu.com/p/d7665192aaaf转载自:架构之路
索引,对于良好的数据库性能非常关键。只要提及到数据库性能优化,都会首先想到“索引”,看看表中是否添加索引。尤其是当表中的数据量越来越大时,索引对性能的影响尤为突出。在数据量较小且负载较低时,没有索引或者不恰当索引对性能的影响可能还不明显,但当数据量逐渐增大时,性能则会急剧下降。
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原
在MySQL 5.6之前,当查询使用到复合索引时,MySQL会先根据索引的最左前缀原则,在索引上查找到满足条件的记录的主键或行指针,然后再根据这些主键或行指针到数据表中查询完整的行记录。之后,MySQL再根据WHERE子句中的其他条件对这些行进行过滤。这种方式可能导致大量的数据行被检索出来,但实际上只有很少的行满足WHERE子句中的所有条件。
在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?
调用EXPLAIN可以获取关于查询执行计划的信息,以及如何解释输出。EXPLAIN命令是查看查询优化器如何决定执行查询的主要方法,但该动能也有局限性,它的选择并不总是最优的,展示的也并不一定是真相。
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型…
英文原文:http://www.mysqltutorial.org/mysql-index/mysql-clustered-index/
本文索引优化包含对 MySQL索引(三)explain实践,优化 MySQL 数据库查询性能 的一些补充。
如果愿意的话,可以把合并表看成一种较老的、有更多限制的分区表,但是它们也有自己的用处,并且能提供一些分区表不能提供的功能。
Mysql 作为互联网中非常热门的数据库,其底层的存储引擎和数据检索引擎的设计非常重要,尤其是 Mysql 数据的存储形式以及索引的设计,决定了 Mysql 整体的数据检索性能。
一、什么是MySQL索引? 想象一下,你正在图书馆找一本特定的书。如果没有索引,你需要走过每一个书架,查看每一本书的标题,这会非常耗时。但如果有一个索引卡片,告诉你每本书的位置,你就可以直接走到那本书所在的书架,快速找到你想要的书。在MySQL数据库中,索引就类似于这个索引卡片,它帮助数据库快速定位到存储在表中的数据。 索引的好处
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构,索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要。索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。
Mysql索引原理深入剖析 1. 索引是一种数据结构,能够提高数据的检索速度。 栗子:从如下数据中找出所有为2的数据:1,3,2,5,7,9,2,5,6? 无索引:由于数据是没有顺序的就只能通过顺序查找的方式一个一个的查找比对。 有索引:会先将数据排序,排序后为1,2,2,3,5,5,6,7,9,这个时候就不用顺序查找了,顺序查找效率也不高,这个时候我们就可以使用比较高效的二分法查找了,所以速度一定比顺序查找快。 2. 结合上面例子可以引出索引的特点:排好序,快速查找,数据结构(mysql里
内容为慕课网的《高并发 高性能 高可用 MySQL 实战》视频的学习笔记内容和个人整理扩展之后的笔记,这一节的内容是对于InnoDb的存储结构进阶了解,同时介绍为什么会使用B+索引作为最终数据结构,但是实际上InnoDb在具体实现中也并没有完全遵循B+的格式,而是在内部做了很多“手脚”,这也是所谓理论和实践之间的差异。
在之前我们聊过了为什么 MySQL 索引要用 B+tree ,而且还这么快。里面曾多处提到了找数据要从我们电脑的磁盘上找,今天就来说一说 MySQL 中的数据在磁盘上,它到底是如何进行存储的?长什么样?
用来加快查询的技术很多,其中最重要的是索引。通常索引能够快速提高查询速度。如果不适用索引,MYSQL必须从第一条记录开始然后读完整个表直到找出相关的行。表越大,花费的时间越多。但也不全是这样。本文讨论索引是什么以及如何使用索引来改善性能,以及索引可能降低性能的情况。
在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询时,会返回执行计划的信息,而不是执行这条SQL(如果 from 中包含子查询,仍会执行该子查询,将结果放入临时表中)
select查询的序列号,包含一组数字,表示查询中执行select子句或者操作表的顺序 id号分为三种情况: 1、如果id相同,那么执行顺序从上到下 2、如果id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行 3、id相同和不同的,同时存在:相同的可以认为是一组,从上往下顺序执行,在所有组中,id值越大,优先级越高,越先执行
作者:junshili 一步一步推导出 Mysql 索引的底层数据结构。 Mysql 作为互联网中非常热门的数据库,其底层的存储引擎和数据检索引擎的设计非常重要,尤其是 Mysql 数据的存储形式以及索引的设计,决定了 Mysql 整体的数据检索性能。 我们知道,索引的作用是做数据的快速检索,而快速检索的实现的本质是数据结构。通过不同数据结构的选择,实现各种数据快速检索。在数据库中,高效的查找算法是非常重要的,因为数据库中存储了大量数据,一个高效的索引能节省巨大的时间。比如下面这个数据表,如果 Mys
总结:最主要的优化策略还是索引优化和SQL优化,之后就是再调整下Mysql的配置参数,想读写分离、分库分表在系统架构设计的时候就需要确定,后续变更的成本太高。
MySql Explain是对SQL进行性能优化不可或缺的工具,通过他我们可以对SQL进行一定的分析和性能优化,降低线上业务因慢查询造成的性能损失。
领取专属 10元无门槛券
手把手带您无忧上云