MySQL HeatWave 是 MySQL 数据库的一项新技术,它是由 Oracle 公司开发的,专为云环境下的高性能分析应用而设计。该技术能够显著提升 MySQL 数据库在大规模数据分析场景下的性能和吞吐量,为企业提供更高效、更快速的数据处理能力。本文将介绍 MySQL HeatWave 的原理、特点和应用场景,以及它在数据库领域带来的重要意义。
这个问题我想只要是在做数据开发的,有一定数据实时性要求、需要做数据的增量同步的公司都会遇到。
纪成,携程数据开发总监,负责金融数据基础组件及平台开发、数仓建设与治理相关的工作。对大数据领域开源技术框架有浓厚兴趣。
我想知道 MySQL 表在磁盘上占用多少空间,但看起来很琐碎。不应该在 INFORMATION_SCHEMA.TABLES 中提供这些信息吗?没那么简单!
canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL(也支持mariaDB)。 canal 就是一个同步增量数据的一个工具。
实时同步是 ChunJun 的⼀个重要特性,指在数据同步过程中,数据源与⽬标系统之间的数据传输和更新⼏乎在同⼀时间进⾏。
Maxwell是由美国Zendesk开源,使用Java编写的MySQL实时抓取工具,可以实时读取MySQL二进制日志binlog,并生成 JSON 格式的消息,作为生产者发送给 Kafka,Kinesis、RabbitMQ、Redis、Google Cloud Pub/Sub、文件或其它平台的应用程序。它设计的初衷是实时采集Mysql数据到Kafka。支持全表load数据,支持自动断点还原,支持按照列将数据发送到Kafka不同分区。
随着业务的发展,用户对系统需求变得越来越多,这就要求系统能够快速更新迭代以满足业务需求,通常系统版本发布时,都要先执行数据库的DDL变更,包括创建表、添加字段、添加索引、修改字段属性等。
PostgreSQL 实时采集是基于 PostgreSQL的逻辑复制以及逻辑解码功能来完成的。逻辑复制同步数据的原理是,在Wal日志产生的数据库上,由逻辑解析模块对Wal日志进行初步的解析,它的解析结果为ReorderBufferChange(可以简单理解为HeapTupleData),再由Pgoutput Plugin对中间结果进行过滤和消息化拼接后,然后将其发送到订阅端,订阅端通过逻辑解码功能进行解析。
通过Flink实时把结果数据写入Clickhouse-DM层中后,我们需要编写数据发布接口方便数据使用方调用数据结果进行可视化,数据发布接口项目为SpringBoot项目“LakeHouseDataPublish”,此Springboot接口支持mysql数据源与clickhouse数据源,mysql数据源方便离线数据展示,clickhouse数据源主要展示DM层实时结果数据。
如今大型的IT系统中,都会使用分布式的方式,同时会有非常多的中间件,如redis、消息队列、大数据存储等,但是实际核心的数据存储依然是存储在数据库,作为使用最广泛的数据库,如何将mysql的数据与中间件的数据进行同步,既能确保数据的一致性、及时性,也能做到代码无侵入的方式呢?如果有这样的一个需求,数据修改后,需要及时的将mysql中的数据更新到elasticsearch,我们会怎么进行实现呢?
InfluxDB 数据模型将时间序列数据组织到存储桶和测量中。一个桶可以包含多个测量值。测量包含多个标签和字段。
如何设计最优的数据库表结构,如何建立最好的索引,以及如何扩展数据库的查询,这些对于高性能来说都是必不可少的。但是只有这些还不够,要获得良好的数据库性能,我们还要设计合理的数据库查询,如果查询设计的很糟糕,即使增加再多的只读从库,表结构设计的再合理,索引再合适,只要查询不能使用到这些东西,也无法实现高性能的查询。所以说查询优化,索引优化,库表结构优化需要齐头并进。
随着业务数据量的剧增,传统MySQL在数据存储上变得越来越吃力,NoSQL因其良好的性能、扩展性、稳定性逐渐成为业务选型的首要考虑。TcaplusDB是腾讯云推出的一款全托管NoSQL数据库服务,旨在为客户提供极致的数据据存储体验,详细信息请参考官方文档。本文主要介绍如何将MySQL数据迁移到TcaplusDB。
早上上班,发现监控数据中,好几张表的所占数据空间突增,有的突增甚至达到了8G,仔细检测数据库之后,没有发现数据异常,那么问题出在哪里?
CanalSharp是阿里巴巴开源项目mysql数据库binlog的增量订阅&消费组件 Canal 的.NET客户端,关于什么是 Canal?又能做什么?我会在后文为大家一一介绍。CanalSharp 这个项目,是由我和 WithLin (主要贡献) 完成,并将一直进行维护的Canal的.NET客户端项目。目前开源在github:https://github.com/CanalSharp/CanalSharp/ 希望大家多多支持,旨在为.NET开发者提供一个友好的对接Canal的选择,为.NET社区生态做贡献。
CanalSharp是阿里巴巴开源项目mysql数据库binlog的增量订阅&消费组件 Canal 的.NET客户端,关于什么是 Canal?又能做什么?我会在后文为大家一一介绍。CanalSharp 这个项目,是由我和 WithLin(主要贡献) 完成,并将一直进行维护的Canal的.NET客户端项目。目前开源在github:https://github.com/CanalSharp/CanalSharp/ 希望大家多多支持,旨在为.NET开发者提供一个友好的对接Canal的选择,为.NET社区生态做贡献。
Tapdata Cloud 是国内首家异构数据实时同步云平台,目前支持 Oracle、MySQL、PG、SQL Server、MongoDB、ES 、达梦、Kafka、GP、MQ、ClickHouse、Hazelcast Cloud、ADB MySQL、ADB PostgreSQL、KunDB、TiDB、MariaDB、Aliyun MariaDB、Aliyun MongoDB、Aliyun RDS for SQLServer、Aliyun RDS for PG、Aliyun RDS for MySQL、TencentDB for MySQL、TencentDB for MariaDB、TencentDB for PG、TencentDB for SQLServer、TencentDB MongoDB、Vika、Apache Doris、PolarDB MySQL、轻流、PolarDB PostgreSQL、Amazon RDS for MySQL 之间的数据同步,并对用户永久免费。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何实时获取 CKafka 中的 JSON 格式数据,经过数据抽取、平铺转换后存入 MySQL 中。 前置准备 创建流计算 Oceanus
流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。
在 2023 年 10 月 21 日,MySQL 5.7将达到其生命周期的终点(EOL,End of Life)。这意味着Oracle将不再为MySQL 5.7提供官方更新、错误修复或安全补丁。
本文阐述了某商业银行如何利用 TiCDC Syncpoint 功能,在 TiDB 平台上构建一个既能处理实时交易又能进行准实时计算的一体化架构,用以优化其零售资格业务系统的实践。通过迁移到 TiDB 并巧妙应用 Syncpoint,该银行成功解决了原有多个 MySQL 集群所面临的数据分布复杂性和跨库关联查询的挑战,实现了数据处理效率和应用性能的显著提升,确保了实时交易的快速响应和数据分析处理的计算资源需求。
停机迁移包括停服迁移与非停服迁移,停服迁移是选择某一时间点流量最少时停止所有服务,并在最短时间内完成数据迁移,此时需要注意停服时间;非停服迁移,即停止所有写数据服务,查询服务并不停止,同样要注意停服时间,防止对生产环境有较大影响。停机迁移完成后,还需要进行数据核对,通常首先要校验迁移前后数据量是否一致,其次还可对迁移前后数据逐条进行校验,还可进行流量回放,保证迁移前后业务表现完全一致。
实时数据同步主要实现从源数据库到目标数据库的实时数据同步。源数据主要支持mysql数据库,目标数据包括mysql数据库和hbase数据库。
我们在做实时数仓时数据往往都是保存到数据库中例如MySQL,当有一条数据新增或修改需要马上将数据同步到kafka中或其他的数据库中,这时候我们需要借助阿里开源出来的Canal,来实现我们功能。
CDC,Change Data Capture,变更数据获取的简称,使用CDC我们可以从数据库中获取已提交的更改并将这些更改发送到下游,供下游使用。这些变更可以包括INSERT,DELETE,UPDATE等。
TiDB Binlog 组件用于收集 TiDB 的 binlog,并准实时同步给下游,如 TiDB、MySQL 等。该组件在功能上类似于 MySQL 的主从复制,会收集各个 TiDB 实例产生的 binlog,并按事务提交的时间排序,全局有序的将数据同步至下游。利用 TiDB Binlog 可以实现数据准实时同步到其他数据库,以及 TiDB 数据准实时的备份与恢复。随着大家使用的广泛和深入,我们遇到了不少由于对 TiDB Binlog 原理不理解而错误使用的情况,也发现了一些 TiDB Binlog 支持并不完善的场景和可以改进的设计。
利用 CDC,您可以从现有的应用程序和服务中获取最新信息,创建新的事件流或者丰富其他事件流。CDC赋予您实时访问后端数据库的能力。
实现Python连接Mysqln以及应用
近年来,随着数据规模越来越大,以及由此衍生出数据实时化的诉求激增,产生了一系列大数据相关的业务场景,场景复杂性高以及业务多维度是明显的两个特点,因此出现许多了实时数仓架构来满足业务需求。
关于数据同步的方式有很多种,现在有一个场景需要将mysql数据库的数据主动同步到我们的工程中,并且能再mysql数据库客户端更改某一行的数据也能将数据同步到另一个数据库或者工程中,对于这种场景的使用我们应该怎么去实现呢?
随着闲鱼业务的发展,用户规模达到数亿级,用户维度的数据指标,达到上百个之多。如何从亿级别的数据中,快速筛选出符合期望的用户人群,进行精细化人群运营,是技术需要解决的问题。业界的很多方案常常需要分钟级甚至小时级才能生成查询结果。本文提供了一种解决大数据场景下的高效数据筛选、统计和分析方法,从亿级别数据中,任意组合查询条件,筛选需要的数据,做到毫秒级返回。
可能谈到保持Redis与Mysql双库的数据一致性,可能很多人最先想到的方案就是读请求和写请求串行化,串到一个内存队列里去。但是这个方案有着一个致命的缺点:读请求和写请求串行化会导致系统的吞吐量大幅度降低,需要使用比正常情况下多几倍的机器去支撑线上的一个请求。Redis与Mysql双库的数据一致性问题为何会出现呢?其实我们可以考虑这么一个业务场景:我们需要更新部分数据,我们首先更新数据库数据,然后清除Redis缓存中的数据。但是数据库更新操作成功了,然而Redis清除缓存出现异常了,这样会导致出现这么一种情况:数据库中的数据已经更新为最新数据,但是Redis缓存中的数据依旧还是老数据,这时候就会出现Redis与Mysql双库的数据一致性问题。
数据准实时复制(CDC)是目前行内实时数据需求大量使用的技术,随着国产化的需求,我们也逐步考虑基于开源产品进行准实时数据同步工具的相关开发,逐步实现对商业产品的替代。本文把市面上常见的几种开源产品,Canal、Debezium、Flink CDC 从原理和适用做了对比,供大家参考。
有赞使用storm已经有将近3年时间,稳定支撑着实时统计、数据同步、对账、监控、风控等业务。订单实时统计是其中一个典型的业务,对数据准确性、性能等方面都有较高要求,也是上线时间最久的一个实时计算应用。通过订单实时统计,描述使用storm时,遇到的准确性、性能、可靠性等方面的问题。 订单实时统计的演进 第一版:流程走通 在使用storm之前,显示实时统计数据一般有两种方案: 在数据库里执行count、sum等聚合查询,是简单快速的实现方案,但容易出现慢查询。 在业务代码里对统计指标做累加,可以满足指标的快速查
OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场。作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创建、主持和盈利的活动,如健身课、音乐会、站立表演或即兴表演,以及Zoom会议平台上的音乐课程。
背景和价值 在实际业务中常常遇到需要从数据库中获取关键业务的数据变化信息,并将这些信息同步到下游业务进行订阅、获取和消费的场景。 如何快速搭建该实时处理链路,往往有一定的开发成本,同时由于业务要求,不同的下游也依赖不同处理逻辑,难以有一套通用的可复制方案。 目前,事件总线 EventBridge 已正式支持 DTS 数据订阅功能,腾讯云的 DTS 数据传输服务不仅解决上游数据库数据流出的问题,并且支持 MySQL、MariaDB、TDSQL 等多种关系型数据库数据订阅,方便用户搭建云数据库、完成异构系统之间
数据资产治理(详情见:数据资产,赞之治理)的前提要有数据。它要求数据类型全、量大,并尽可能多地覆盖数据流转的各个环节。元数据采集就变得尤其重要,它是数据资产治理的核心底座。
Flink 和 ClickHouse 分别是实时计算和(近实时)OLAP 领域的翘楚,也是近些年非常火爆的开源框架,很多大厂都在将两者结合使用来构建各种用途的实时平台、实时数仓,效果很好。关于两者的优点就不再赘述,本文来简单介绍笔者团队在点击流实时数仓方面的一点实践经验。
数仓的基础是数据,没有数据,那么数仓就是一个空壳,数据的来源有很多,我们需要按照一个规则和流程来制定采集方案,还要根据数据的特性和用途选取合适的采集程序,数据的采集我们一般分为全量和增量,对于一些业务场景,也需要二者配合使用。
作者 | stone-no1 来源 | https://blog.csdn.net/weixin_38071106/article/details/88547660 Canal 定位:基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql。 原理: canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议 mysql master收到dump请求,开始推送binary log给slave(也就是canal) canal解
Hello 大家好,我是阿粉。不知道大家在日常的工作中有没有遇到这样的场景,很多时候业务数据有变更需要及时加载到缓存、ES 或者发送到消息队列中通知下游服务。
自开源以来,Tapdata 吸引了越来越多开发者的关注。随着更多新鲜力量涌入社区,在和社区成员讨论共创的过程中,我们也意识到在基础文档之外,一个更“直观”、更具“互动性”的实践示范教程的重要性和必要性。为了辅助开发者更好地理解技术文档,真正实现快速上手、深度参与,即刻开启实时数据新体验,我们同步启动了 Tapdata 功能特性及操作演示系列教程。 以下,为本教程的第一弹内容——零基础快速上手实践,细致分享了从源码编译和启动服务到如何新建数据源,再到如何做数据源之间的数据同步的启动部署及常见功能演示,主要任务包括:
需求来源是开发想把多个库放置到一个中心库中,实现统计分析的需求。因此就有了多主一从的构想,而mysql不提供这样的原生方案(最新的mysql版本支持,但是新版本谁敢用呢),只能通过几种变种来实现,以下是集中方案的介绍:
Druid 是一个专为大型数据集上的高性能切片和 OLAP 分析而设计的数据存储系统。
工作需要研究了下阿里开源的MySQL Binlog增量订阅消费组件canal,其功能强大、运行稳定,但是有些方面不是太符合需求,主要有如下三点:
作者 | Micah Lerner 译者 | 明知山 策划 | 蔡芳芳 本文对论文“Druid:一个实时分析数据存储系统”进行了概括总结,对 Druid 的架构、存储格式、查询 API 等进行了简要介绍。如需深入了解更多的细节,请查看论文原文。 这篇论文研究的是什么 Druid 是一个开源数据库,可以实现低延迟的近实时和历史数据分析。Druid 最初是由广告技术公司 MetaMarkets 开发的,后来被 Snap 收购,现在已被 Netflix、Confluent 和 Lyft 等公司应
领取专属 10元无门槛券
手把手带您无忧上云