索引,可能让好很多人望而生畏,毕竟每次面试时候 MySQL 的索引一定是必问内容,哪怕先撇开面试,就在平常的开发中,对于 SQL 的优化也而是重中之重。
索引的本质其实就是各种各样的数据结构,在增删改查的各种操作有不通的时间复杂度和空间复杂度
MVCC是Multi-Version Concurrency Control(多版本并发控制)的缩写。
InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万。为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。
本来这篇文章我前两个星期就打算写了,提纲都列好了,但是后面我去追《漫长的季节》这部剧去了,这就花了一个周末的时间,再加上后面一些其它的事,导致没来得及写
原文链接:https://www.cnblogs.com/leefreeman/p/8315844.html
作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
InnoDB 一棵 B + 树可以存放多少行数据?这个问题的简单回答是:约 2 千万
点击上方蓝色“程序猿DD”,选择“设为星标” 回复“资源”获取独家整理的学习资料! 来源:cnblogs.com/leefreeman/p/8315844.html 一个问题? InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万。为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。 我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛。在计算机中磁盘存储数据最小单元是扇区,一个扇区的大
1.中央处理器(英文Central Processing Unit,CPU)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软 件中的数据。 CPU核心组件: 1.算术逻辑单元(Arithmetic&logical Unit)是中 央处理器(CPU)的执行单元,是所有中央处理器的核 心组成部分,由"And Gate"(与门) 和"Or Gate"(或门)构成的算术逻辑单元,主要功能是进行二位元的算术运算,如加减乘(不包括整数除法)。 2.PC:负责储存内存地址,该地址指向下一条即将执行的指令,每解释执行完一条指令,pc寄存器的值 就会自动被更新为下一条指令的地址。 3.寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。 用途:1.可将寄存器内的数据执行算术及逻辑运算。 2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。 3.可以用来读写数据到电脑的周边设备。4.Cache:缓存
作者:李平 https://www.cnblogs.com/leefreeman/p/8315844.html?from=singlemessage&isappinstalled=0 一个问题? In
作者丨李平 https://www.cnblogs.com/leefreeman/p/8315844.html?from=singlemessage&isappinstalled=0 一个问题? I
来源 | https://www.cnblogs.com/leefreeman/p/8315844.html
因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。
因为这是可以算出来的,要搞清楚这个问题,我们先从 InnoDB 索引数据结构、数据组织方式说起。
这段时间分享了很多校招的面经,有很多读者说想看社招的,其实社招面试是基于你的工作项目来展开问的,比如你项目用了 xxx 技术,那么面试就会追问你项目是怎么用 xxx 技术的,遇到什么难点和挑战,然后再考察一下这个 xxx 技术的原理。
数据库版本 Server version: 5.1.41-community-log MySQL Community Server (GPL)
不管是啥业务,最终数据都要落地,数据库这一环是肯定少不了的。随着业务发展,并发越来越高,数据库很容易成为整个链路的短板。这也是大厂面试中比较常被问到的。而调优的第一步,都是从sql语句、索引入手。先得保证单个数据库执行没问题,才会有更高层次的分库分表、弹性、容灾等等。
1.中央处理器(英文Central Processing Unit,CPU)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。
前言:在当前的数据分析岗位中,多数人在做着SQL-Boy\SQL-Girl的工作,在数据分析面试中,SQL是必不可少的一环,对于SQL不仅有常见函数用法的考察,更多时候面试官喜欢出一些编程类题目,本文我们来了解一下那些典型的SQL面试题。(文中的问题均以MySQL为例)
通过上篇文章《MySQL的体系结构与SQL的执行流程》了解了SQL语句的执行流程以及MySQL体系结构中「连接器」、「SQL接口」、「解析器」、「优化器」、「执行器」的功能以及在整个流程中的作用。不过上篇文章留了个尾巴,在执行器调用存储引擎后,存储引擎内部做了什么事没有进一步说明,本文会对此展开介绍,使得我们对SQL整体的执行流程有更加清晰的认识。
今天主要介绍一下Oracle、MySQL、sqlserver、pg数据库在删除重复数据时是怎么实现的。这里用实例来说明。
熟悉 MySQL 的同学一定都知道,MySQL 对于复杂条件查询的支持并不好。MySQL 最多使用一个条件涉及的索引来过滤,然后剩余的条件只能在遍历行过程中进行内存过滤。
可以看到“ALLEN”和“SMITH”这两个人的数据重复了,现在要求表中name重复的数据只保留一行,其他的删除。
索引可以说是每个工程师的必备技能点,明白索引的原理对于写出高质量的 SQL 至关重要,今天我们就从 0 到 1 来理解下索引的原理,相信大家看完不光对索引还会对 MySQL 中 InnoDB 存储引擎的最小存储单位「页」会有更深刻的认识
熟悉 MySQL 的同学一定都知道,MySQL 对于复杂条件查询的支持并不好。MySQL 最多使用一个条件涉及的索引来过滤,然后剩余的条件只能在遍历行过程中进行内存过滤,对这个过程不了解的同学可以先行阅读一下《MySQL复杂where条件分析》。
上篇文章介绍了innoBD会有若干索引页,每个索引页的两个虚拟列,infimun最小虚拟行记录,supremun最大虚拟行记录,这两个存在innoDB的头部信息,里面还有delete_mark,next_record等。free space空间会给user records存储的数据申请,直到用完则会申请新的页。
Mysql系列的目标是:通过这个系列从入门到全面掌握一个高级开发所需要的全部技能。
Hello我又来了,快年底了,作为一个有抱负的码农,我想给自己攒一个年终总结。自上上篇写了手动搭建Redis集群和MySQL主从同步(非Docker)和上篇写了动手实现MySQL读写分离and故障转移之后,索性这次把数据库中最核心的也是最难搞懂的内容,也就是索引,分享给大家。
1、页是 InnoDB 中管理数据的最小单元。Buffer Pool 中存的就是一页一页的数据。
作为在后端圈开车的多年老司机,是不是经常听到过,“mysql 单表最好不要超过 2000w”,“单表超过 2000w 就要考虑数据迁移了”,“你这个表数据都马上要到 2000w 了,难怪查询速度慢”
原因是会造成全表扫描,有位读者说这种说法是有问题的,实际上针对无 where_clause 的 COUNT(*),MySQL 是有优化的,优化器会选择成本最小的辅助索引查询计数,其实反而性能最高,这位读者的说法对不对呢
where peopleId in (select peopleId from people group by peopleId having count(peopleId) > 1)
这些名言民语就和 “群里只讨论技术,不开车,开车速度不要超过 120 码,否则自动踢群”,只听过,没试过,哈哈。
众所周知,在mysql5以前,默认的存储引擎是:myslam。但mysql5之后,默认的存储引擎已经变成了:innodb,它是我们建表的首选存储引擎。
注意:本文基于mysql5.7进行操作,各个版本的mysql使用Explan会有微小的差异
上一篇文章对InnoDB的行格式进行了解析,但是却把记录头信息抛到这里来讲,那么开始吧,注意本片需要有一点数据结构和算法基础,如果基础薄弱,请先确保自己会二分查找和链表再来食用
你好,我是坤哥,今天是国庆最后一天,不知大家是否玩得尽兴,我基本在家带娃了,累得半死,顺带肝了一篇文,来自读者曾经在阿里的面试题,希望对大家有帮助,另外也欢迎大家加我微信「geekoftaste」,一起探讨技术问题,有疑问的我也许可以帮上忙^_^
在之前3月17号和4月9号的文章中,我们讲过innodb的数据页结构,如果对下面的内容有什么不理解的话,还请在文章分类中翻看之前的文章,防止大家忘记,这里我把图再贴过来:
调用EXPLAIN可以获取关于查询执行计划的信息,以及如何解释输出。EXPLAIN命令是查看查询优化器如何决定执行查询的主要方法,但该动能也有局限性,它的选择并不总是最优的,展示的也并不一定是真相。
在现代数据库系统中,MySQL的InnoDB存储引擎通过精巧的数据结构设计和高效的索引算法,为海量数据提供了稳定、快速且持久化的存储服务。
在 MySQL 官方提到,改善操作性能的最佳方法 SELECT 在查询中测试的一个或多个列上创建索引。索引条目的作用类似于指向表行的指针,从而使查询可以快速确定哪些行与WHERE子句中的条件匹配,并检索这些行的其他列值。所有MySQL数据类型都可以建立索引。
MYSQL数据库-索引 零、前言 一、索引概念 二、认识磁盘 三、理解索引 1、如何理解Page 2、B+ vs B 3、聚簇索引 VS 非聚簇索引 4、普通索引 5、总结 四、索引操作 1、创建索引 2、查询索引 3、删除索引 零、前言 本章主要讲解MYSQL数据库中的索引这一重要知识点 一、索引概念 索引的价值: 提高数据库的性能,索引是物美价廉的东西了:不用加内存,不用改程序,不用调sql,只要执行正确的create index ,查询速度就可能提高成百上千倍,但是查询速度的提高是以插入、更新
索引是应用程序设计和开发的一个重要方面。如果索引过多,应用程序中的更新、删除等操作会变慢,性能会受到影响;如果索引过少,对查询性能又会产生影响。
如果数据比较少时,或者查询的频率比较低的时候,索引的作用并不明显。因为这时候表中的数据差不多都可以完全缓存在内存中。所以就算是进行全表扫描也不会太慢。
目录 1.何种查询支持索引? 2.注意事项和建议 一 何种查询支持索引? 1 MySQL 目前支持前导列 ---- 就目前来说,mysql 暂时只支持最左前缀原则进行筛选。 例子:创建复合索引 cre
1千万,2千万,或者上亿条数据?具体的答案不重要,当然肯定也不会是一个固定的数目,今天我们就一起来探讨探讨这个问题。
领取专属 10元无门槛券
手把手带您无忧上云