http://www.searchdoc.cn/rdbms/mysql/dev.mysql.com/doc/refman/5.7/en/index.com.coder114.cn.html
本篇博客,博主为大家带来的是关于数据仓库中一个非常重要的知识点缓慢变化维的讲解!
快手的传统离线链路和很多公司是一致的,基于 Hive做离线分层数仓的建设。在入仓环节和层与层之间是基于 Spark 或者 Hive做清洗加工和计算。这个链路有以下四个痛点:
这是很早之前面的,第一次面数据分析的面试,当时还傻乎乎的以为数据分析和数据挖掘是一回事呢。结果才发现,数据分析岗位大多注重的是数据库的能力,比如sql语句的考察,hive的考察,以及一些运营思维的考察,所以第一次面试就很悲剧啦,不过题目还是很有代表性的。其他的不写了,这里只分享一个关于sql的题目。 1、问题引出 现在有两个数据表,一个数据表记录司机的信息,比如司机id,司机姓名,司机注册时间等等,一个数据表记录一天的订单情况,比如订单ID,订单司机id,订单时间。写sql语句,返回每个司机今天最早的一笔订
今天我们主要来讲一个很简单但是很常见的需求,实时计算出网站当天的pv值,然后将结果实时更新到mysql数据库,以供前端查询显示。
在MySQL中,优化数据查询和生成报表是至关重要的任务,WITH ROLLUP是一个用于在查询结果中生成合计行的特殊子句。它可以在GROUP BY子句中使用,以在结果中添加额外的行,显示分组的合计值。
顾名思义,cluster(集群)由一台及以上主机节点组成并提供存储及搜索服务,为方便理解可以将其看作为mysql集群; elasticsearch集群名称在配置文件ES_HOME/config/elasticsearch.yml中定义,集群名称默认为elasticsearch,可通过cluster.name: my-application属性定义; 单台节点在集群中的名字可通过node.name: node-1属性定义,默认为自动生成的一个uuid值;
在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。
Apache Doris是一个现代化的MPP分析型数据库产品。仅需亚秒级响应时间即可获得查询结果,有效地支持实时数据分析。Apache Doris的分布式架构非常简洁,易于运维,并且可以支持10PB以上的超大数据集。
在Oracle中,如果要进行日期间的查询需要用到Oracle的内置函数to_date()。
数据库范式是确保数据库结构合理,满足各种查询需要、避免数据库操作异常的数据库设计方式。满足范式要求的表,称为规范化表,范式产生于20世纪70年代初,一般表设计满足前三范式就可以,在这里简单介绍一下前三范式。
redis实现方案,使用bitmap来实现,bitmap是redis 2.2版本开始支持的功能,一般用于标识状态,
把所有的考研单词存储到数据库中,每天定时在两个时间点,上午7:30、下午6:30,将属于当天的单词发送到指定的邮箱中。一个月一遍。一年12遍,我想再笨的人也会背下来的。
在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。
业务所有的服务器日志都是通过filebeat进行采集,然后写入到一个公共的ES集群中。因为当前使用的集群无法继续扩容了并且版本也较低(5.6.4), 所以需要把集群迁移到一个新的规模更大的集群,并且升级一下ES的版本,升级到6.4.3.
本文主要从Binlog实时采集和离线处理Binlog还原业务数据两个方面,来介绍如何实现DB数据准确、高效地进入数仓。
携程火车票事业群运营着铁友、携程火车票和去哪儿火车票等重要的业务和品牌,目前正在积极地拓展海外市场。火车票的指标平台旨在为业务人员提供便捷的指标查询服务,让业务人员能够快速灵活地获得这些业务和品牌相关的指标数据。
每月关注:35页数据库技术干货,汇总一个月数据库行业热点事件、新的产品特性,包括重要数据库产品发布、警报、更新、新版本、补丁等。
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:
对于第一题,我联想到leetcode的第N高的薪水的问题,没错第一题最好采用函数的方法,将 N = 10 来作为参数输入
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHA
签到功能相信大家都很熟悉了,功能就是用户每天可以签到一次,连续签到固定天数可以获得奖励。这里我把功能简单化:
当面试官问:"网站高并发怎么做?"时,该怎么回? 在高并发下,我们(初级程序员)能做什么? 一:mysql方面 mysql方面,我们主要要从以下几点去考虑: 1:索引 mysql其实没有想象中的那
分库分表是非常常见针对单个数据表数据量过大的优化方式,它的核心思想是把一个大的数据表拆分成多个小的数据表,这个过程也叫(数据分片),它的本质其实有点类似于传统数据库中的分区表,比如mysql和oracle都支持分区表机制。
想象一下如果你必须在几个星期内迁移数以亿计的数据和100多个服务项目,同时还要保持UBER被几百万的乘客正常使用,这是多么艰巨的任务啊!而以下这个故事就是关于数十名工程师是如何帮助UBER在2014年迁移到Mezzanine的故事。 在2014年年初,我们面临了一个严峻的现实问题,关于我们的路径的增长(一个月约增长了20%),所以在年底之前用于存储路径的存储容量将会不够用。我们因此推出Mezzanine项目这一盛举来解决这个特别的问题。数据大迁移的日期定为万圣节(10月31日),而这恰是交通量会非常高的一天
随着丰巢业务系统快速增长,其核心系统的数据量,早就跨越了亿级别,而且每年增量仍然在飞速发展。整个核心系统随着数据量的压力增长,不但系统架构复杂度急剧增长,数据架构更加复杂,传统的单节点数据库,已经日渐不能满足丰巢的需求,当单表数量上亿的时候,Oracle 还能勉强抗住,而 MySQL 到单表千万级别的时候就难以支撑,需要进行分表分库。为此,一款高性能的分布式数据库,日渐成为刚需。
Tech 导读 本文重点介绍了MySQL数据库性能优化的常见手段、底层架构实现原理、互联网医院建设过程中的几个典型案例;读者可以通过本文了解到日常开发中的注意事项、数据库性能优化的解决思路、如何规避隐藏规则带来的风险等几个方面的知识。
最近炒股是买什么就跌,一直是亏损哎,哭,作为学过python的人来讲怎么能容忍,之前也炒过股票觉得用阳包阴这样的k线来选出来的股票还不错。于是说做就做,我可以用python来写一个选股的程序。
转载请注明出处:帘卷西风的专栏(http://blog.csdn.net/ljxfblog)
前言: 接了一个小需求,获取用电统计的数据,要求获取最近月,周,天统计数据,MySQL 本来就包含处理这种需求的函数,这里记录下。 查询当天数据 SELECT * FROM 表名 WHERE TO_DAYS( 表中时间字段 ) = TO_DAYS(NOW()); 查询本周数据 SELECT * FROM 表名 WHERE YEARWEEK(DATE_FORMAT( 表中时间字段,'%Y-%m-%d')) = YEARWEEK(NOW()); 查询当月数据 SELECT * FROM 表名 WHERE Y
最近遇到mongo集群性能问题,主要体现在查询性能或者聚合性能慢(查询类似关系型数据库中select * from xx where a='xx',另外聚合类似group by+count、sum),nosql与关系型数据库存在很多类似,比如分页查询语句是比较常见问题,分页优化在数据库优化原理类似.常见分页场景需求(本次主要基于这2种场景进行优化介绍)
本人是一个测试工程师,主要负责接口以及性能方便的压测,目前在一家医疗数据公司任职,既然是做医疗数据,所以主要公司的主要业务就做是医疗软件。
2015年12月,也就是在一年前,开发了半年的云存储服务上线。这对于付出了半年努力的我们来说,是一件鼓舞人心的事件。因为这个服务在我们手上经历了从0到1的过程。这是我们自己的一小步,却是整个云存储服务的一大步。 我们开发的是一款视频监控类的软件,分为视频采集端跟观看端。采集端可以是专业摄像头,手机,无人机等各类智能设备,观看端一般是手机或者电脑。最基础的功能,就是视频观看,采集端实时采集图像,编码,传输,观看端进行点播服务。同时采集端可以监测视频画面的运动幅度,然后触发报警,并且会录制报警视频。我们的云存储
前几天在帮产品同学对百万标签的数据进行迁移,这之间关联了sku和spu的表数据。虽然有数据备份(两天前),但是不经意间把sku的测试环境的数据进行导入sql操作。
实时订单开发,说实话,最近开发,掉了一半的头发,复杂度,我就点到为止,还是希望大家多看看flink,这个可是开发利器。写这篇文章的目的,就是给大家分享一下实时订单的开发思路和遇到问题如何去解决。我就写的比较简单点,很多花里胡哨的业务逻辑我就隐藏了,以及给下游提供数据,给策略提供数据这些我就不追溯了。
对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机。缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了。此时,如果没用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。
我们生活在数据的黄金时代。有些公司将其分析为更好的自己,有些公司为了获利而进行交易,没有一家公司因其价值而自由放弃 - 对于他们的业务和犯罪分子。
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
现有注册用户表table_user,有两个字段:user_id(用户id)、reg_tm(注册时间)。有订单表table_order,有三个字段:order_id(订单号)、order_tm(下单时间)、user_id(用户id)。
-pbkdf2 和 -iter 1000 选项则告诉 OpenSSL 使用 PBKDF2 密钥派生函数,并且进行1000次迭代,使得暴力破解更加困难。
4. 一张采用Innodb的User表,其中id为主键,name为普通索引,试从索引的数据结构角度分析,以下两条语句(均返回一条记录)在检索过程中有哪些区别
作者:dcguo 使用 sql 做数仓开发有一段时间了,现做一下梳理复盘,主要内容包括 sql 语法、特性、函数、优化、特殊业务表实现等。 mysql 数据结构 常用 innodb 存储为 B+ 树 特点 多路平衡树,m 个子树中间节点就包含 m 个元素,一个中间节点是一个 page(磁盘页) 默认 16 kb; 子节点保存了全部得元素,父节点得元素是子节点的最大或者最小元素,而且依然是有序得; 节点元素有序,叶子节点双向有序,便于排序和范围查询。 优势 平衡查找树,logn 级别 crud; 单一节点比二
在前面的几篇文章中,我们介绍了从需求到设计,再到部分功能实现,本篇作为完结篇,我们一起来完成剩下的功能实现,主要为日志管理和性能监控以及有同学提出测试用例多参数的问题。
今天分享的内容主要分为四个部分,首先会介绍下严选实时数仓的背景、产生的一些问题。然后是针对这些背景和问题对实时数仓的整体设计和具体的实施方案,接着会介绍下在实时数仓的数据质量方面的工作,最后讲一下实时数仓在严选中的应用场景。
在今天的互联网里,高并发、大数据量、大流量已经成为了代言词,那么我们的系统也承受着巨大的压力,首当其冲的解决方案就是redis。
数据库:RDS(阿里云)-5.6 PHP:PHP7.2 + Lumen 系统:Ubuntu
最近在做年度规划的时候,一直在思考一个问题,怎么才能能够得到业务侧对我们服务质量的想法和建议,或者换句话来说,我们的价值和表现如果自我评判,一般来说都会有失偏颇,而且相对容易乐观悲观两极化,所以对于评判的形式,经过评估觉得还是问卷的形式要好一点,最主要的一个原因是我们要想得到别人对我们的评价,我们最好能够自己把问题想明白,理清楚了。
领取专属 10元无门槛券
手把手带您无忧上云