如:要实现获取下图曲线图数据(ps:当然也可能是柱状图等,数据都是一样的),默认获取七天内的数据,点击今天,7天,15天,30天可任意切换,其中今天是按小时统计.
摘要:UAV.Monitor提供了对全维监控指标的预警功能,各类型的监控指标均可配置预警策略,当预警策略被触发后,可通过邮件、HTTP调用等方式进行通知报警,并会根据预警时间频率等对报警动作进行压制。
业务需求 最近要在系统中加个统计功能,要求是按指定日期范围里按天分组统计数据量,并且要能够查看该时间段内每天的数据量。
NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netcore,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode。
在上一篇 《事件记录 | performance_schema全方位介绍"》中,我们详细介绍了performance_schema的事件记录表,恭喜大家在学习performance_schema的路上度过了两个最困难的时期。现在,相信大家已经比较清楚什么是事件了,但有时候我们不需要知道每时每刻产生的每一条事件记录信息, 例如:我们希望了解数据库运行以来一段时间的事件统计数据,这个时候就需要查看事件统计表了。今天将带领大家一起踏上系列第四篇的征程(全系共7个篇章),在这一期里,我们将为大家全面讲解performance_schema中事件统计表。统计事件表分为5个类别,分别为等待事件、阶段事件、语句事件、事务事件、内存事件。下面,请跟随我们一起开始performance_schema系统的学习之旅吧。
上一篇《事件统计 | performance_schema全方位介绍》详细介绍了performance_schema的事件统计表,但这些统计数据粒度太粗,仅仅按照事件的5大类别+用户、线程等维度进行分类统计,但有时候我们需要从更细粒度的维度进行分类统计,例如:某个表的IO开销多少、锁开销多少、以及用户连接的一些属性统计信息等。此时就需要查看数据库对象事件统计表与属性统计表了。今天将带领大家一起踏上系列第五篇的征程(全系共7个篇章),本期将为大家全面讲解performance_schema中对象事件统计表与属性统计表。下面,请跟随我们一起开始performance_schema系统的学习之旅吧~
实验室设备管理系统主要包括:实验室设备信息的管理模块,实验室设备信息的浏览查询模块,设备事故记录模块,设备资料管理模块 设备的损坏管理模块 ,设备损坏信息浏览查询,设备类别设置,系统用户的管理。通过本系统,可以更加有效的管理学生实验室设备信息开发技术:php,mysql,apache
既然要优化数据库,我们就首先要知道,优化的是什么,或者说:什么因素影响了数据库的性能。
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
为什么要分表 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。 mysql proxy:amoeba 做mysql集群,利用amoeba。 从上层的java程序来讲,不需要知道主服务器和从服务器的来源,即
information_schema是mysql自带的一个信息数据库,其保存着关于mysql服务器所维护的所有其他数据库的信息,如数据库名,数据库的表,表栏的数据类型与访问权限等
世界上最深入人心的数据分析工具,是Excel,在日本的程序员考试中,程序语言部分,是可以选择Excel表格工具作为考试选项的。可见其重要性。
我们从三个各方面,前端上报,数据收集和入库,数据展示来介绍了如何打造一个测速系统。
这是一个实际业务需求中的问题。某一直播业务表中记录了如下格式的用户进出直播间日志数据:
我们知道在 MySQL 中创建一张表时,一些统计表会发生变化,比如:mysql/innodb_index_stats,会多出几行对新表的描述。
来源:juejin.im/post/5bcc2935f265da0ac66987c9
背景 今天在进行后台数据监控时; 需要对一天24小时的下单量进行时间段的统计; 但是下单时间字段 pay_time 选取的是 timestamp 类型; 此时需要进行时间段的数据分组剥离,在此做一下实现方式,请多指教 … 环境 框架:ThinkPHP5.1.2 系统:nginx/win10 、phpStudy2017 实现方式 1. 首先,考虑到使用的是 group分组技巧; 那么就必须要将 pay_time 中记录的字段数据进行 24时的定位切分; 这里可以用到 substrin
某业务CDB实例,每天在特地时间段内( 00:07:00 - 00:08:00左右)机器对应IO监控出现写入尖刺,且主从实例都有类似现象,从机器监控可以看到,问题确实存在。
#!/bin/bash cat `ls | grep SDU` | awk -F" " '{print $1}' |sort | uniq -c | awk -F" " '{print $2}' > name.txt # 由于三张表的名字是乱的,先赛选出所有名字存入name.txt 文件 # sort 分组,uniq -c 分组计算个数 ca
1,在稳定性层面来说,更多的是关注高可用、读写分离、负载均衡,灾备管理等等high level层面的措施(就好比要保证生活的稳定性)
提示:公众号展示代码会自动折行,建议横屏阅读 一、问题描述 某业务CDB实例,每天在特地时间段内( 00:07:00 - 00:08:00左右)机器对应IO监控出现写入尖刺,且主从实例都有类似现象,从机器监控可以看到,问题确实存在。 不仅master,进行同步的slave上有相同的现象,业务方希望找到导致该IO尖刺问题稳定出现的原因。 二、问题分析 首先确定问题来源,上图所示监控为机器级别,机器IO写入负载是否来源于mysqld进程?如果来源于mysqld进程,是来自于mysqld进程的哪一部分
注意:null 值不参与聚合函数运算(如果你查询address 出现结果为5)
使用搜狗实验室提供【用户查询日志(SogouQ)】数据,使用Spark框架,将数据封装到RDD中进行业务数据处理分析。数据网址:http://www.sogou.com/labs/resource/q.php
在2月1日之前,有 A,B,C 三家企业下过订单,而2月1号到3月1号有 A,D,E 企业下过订单,找到存在2月1号到3月1号而不存在 2月1号之前的客户,也就是 D,E企业就是新客户。
游戏开服前两天(2022-08-13至2022-08-14)的角色登录和登出日志如下
作为数据分析师,我们需要经常制作统计分析图表。但是报表太多的时候往往需要花费我们大部分时间去制作报表。这耽误了我们利用大量的时间去进行数据分析。但是作为数据分析师我们应该尽可能去挖掘表格图表数据背后隐藏关联信息,而不是简单的统计表格制作图表再发送报表。既然报表的工作不可免除,那我们应该如何利用我们所学的技术去更好的处理工作呢?这就需要我们制作一个Python小程序让它自己去实现,这样我们就有更多的时间去做数据分析。我们把让程序自己运行的这个过程称为自动化。
以上是几种常见的设计方案,具体根据业务场景去选择。当然实际业务场景中也可借助一些系统已经使用的中间件,比如Redis
子查询有返回结果: EXISTS子查询结果为TRUE,则执行外层查询 子查询无返回结果: EXISTS子查询结果为FALSE,外层查询不执行 当数据量大的时候使用exists,如数据量于一万以上使用,数据量少时可以使用in
近年来随着我国计算机水平的发展,如今的天气网站信息多,想要获取有效的信息需要的时间太长。为了解决社会人员和专业气象人员获取符合自己的并符合自己意向的天气信息,利用Hive对这些天气信息进行收集和分析势在必行。所以需要一种能够具有分析天气系统,可供用户利用自身优势,分析天气信息,从而尽快找到心仪的天气。
SQL常见面试题总结 (原创不易,你们对阿超的赞就是阿超持续更新的动力!) (以免丢失,建议收藏,阿超持续更新中......) (------------------------------------------------------------------------) 常用SQL语句 SQL常用的聚合函数 Group By和Order By where和having子句的区别 count(*)和count(1)有什么区别 count(1) 含义 用count对字段为null的数据可以查出来吗
(2)对于由严重问题(故障)的要及时修理,并记录修理日期、设备名、编号、修理厂家、修理费用、责任人等。
日常应用运维工作中,Dev或者db本身都需要统计表的行数,以此作为应用或者维护的一个信息参考。也许很多人会忽略select count(*) from table_name类似的sql对数据库性能的影响,可当你在慢日志平台看到执行了数千次,每次执行4秒左右的查询,你还会无动于衷吗?作为一个有担当敢于挑战的dba,你们应该勇于说no,我觉得类似的需求不可避免但不应该是影响数据库性能的因素,如果连这个都摆不平公司还能指望你干什么。经过几番深思总结,我根据查询的需求,分为模糊查询和精确查询,可以通过下面的三种方式来择优选择。下面测试是线上一个日志表,表大小在6个G左右。
◆背景介绍 2020年6月,商品系统从SAP、中间层等接入的商品数据越来越多且更新频繁,商品数据库主从更新数据量大,约每分钟54万多条更新,约八分钟就会产生大于1G的Binlog文件,在数据库IO能力一定的情况下,发生数据同步延迟,影响写入与读出的及时性,进而影响到商品基础系统的可用性。 如果仅是从翻阅代码的角度去分析,会花费大量人力。抛开系统本身,当商品多个应用都在读写商品库,并在数据库层起到数据汇总和集中反馈的情况下,分析这个点是一个较好的方向。 ◆分析模型 把Binlog解析成Sql 纯文本,解析出来
有台MySQL服务器不定时的会出现并发线程的告警,从记录信息来看,有大量insert的慢查询,执行几十秒,等待flushing log,状态query end
SELECT * FROM product ORDER BY price DESC;
基于Swoole的websocket服务,计划整合3篇进行技术整理,该服务主要有2个核心业务,用户消息服务(消息计数统计)和 客服IM消息系统服务,这篇先说用户消息服务是怎么设计实现的。
本次分享,基于数据库事务处理的核心技术并发访问控制技术,TDSQL原创性提出了全态数据的概念和基于历史态数据的可见性判断算法,并基于此实现了全时态数据库。
1)当使用组函数的select语句中没有group by子句时,中间结果集中的所有行自动形成一组,然后计算组函数;
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sRu202yb-1644834575572)(/img/image-20210423150750606.png)]
印象中网上有些“XX 面试官”系列的网文也有过类似问题的讨论,那 MySQL 统计数据总数 count(*) 、count(1)和count(列名) 哪个性能更优呢?今天我们就来聊一聊这个问题。
线上的MySQL服务器,最近有很多慢查询。需要统计出行数大于100万的表,进行统一优化。
不管是任何数据库.都会有查询功能.而且是很重要的功能.上一讲知识简单的讲解了表的查询所有.
高能预警,这是一篇干货满满的MySQL技术文章,总有一天,你必然会用到,记得收藏! -- 来自一位被技术经理毒打多年的程序员的忠告
over_clause 表示 COUNT 以窗口函数工作,MySQL 8.0 开始支持,这个不在本文展开,感兴趣的同学请参考 Section 14.20.2, “Window Function Concepts and Syntax”。
大概去年这时候,写过一篇文章:浅谈容量测试与容量规划:https://www.cnblogs.com/imyalost/p/9630846.html
领取专属 10元无门槛券
手把手带您无忧上云