在 SQL 优化中,索引是至关重要的一环,能给查询效率带来质的飞跃,但是索引并不是万能的,不合理的索引设计甚至会拖慢查询效率。本文将详细介绍索引的概览和分类,并讨论使用索引时应该权衡的要素,关于索引底层实现的内容将在下一篇文章 MySQL 索引结构 中介绍。
在 MySQL 中,最左前缀匹配指的是在查询时利用索引的最左边部分进行匹配。当你执行查询时,如果查询条件涉及到组合索引的前几个列,MySQL 就能够利用该复合索引来进行匹配。
上一篇文章《MySQL索引那些事》主要讲了MySQL索引的底层原理,且对比了B+Tree作为索引底层数据结构相对于其他数据结构(二叉树、红黑树、B树)的优势,最后还通过图示的方式描述了索引的存储结构。但都是基于单值索引,由于文章篇幅原因也只是在文末略提了一下联合索引,并没有大篇幅的展开讨论,所以这篇文章就单独去讲一下联合索引在B+树上的存储结构。
之前在网上看到过很多关于mysql联合索引最左前缀匹配的文章,自以为就了解了其原理,最近面试时和大牛交流中,发现遗漏了些东西,这里自己整理一下这方面的内容。
今天主要来聊聊 MySQL 中索引的工作原理,这一部分的知识,在工作中经常被使用到,在面试中也几乎是必问的。所以,不管是面试造火箭,还是工作拧螺丝,掌握索引的工作原理,都是十分有必要的。
联合索引可以测试包含索引中所有列的查询,或仅测试第一列、前两列、前三列等等的查询。如果在索引定义中以正确的顺序指定列,则复合索引可以加快对同一表的多种查询的速度。
最近,在 mysql 测试最左前缀原则,发现了匪夷所思的事情。根据最左前缀原则,本来应该索引失效,走全表扫描的,但是,却发现可以正常走索引。
背景: 为了提高数据库效率,建索引是家常便饭;那么当查询条件为2个及以上时,我们是创建多个单列索引还是创建一个联合索引好呢?他们之间的区别是什么?哪个效率高呢?我在这里详细测试分析下。
我随手在网上搜了下, 基本全部都是这个结论,似乎这个结论大家都耳濡目染了,应该大多数人都觉得这个结论是正确的吧。
相信没有人会故意创建重复的冗余的索引,很多重复和冗余的索引都是在不经意间创建的,今天松哥来和大家捋一捋这个问题。 因为我们日常在使用 MySQL 的过程中,基本上都是使用 InnoDB 引擎,所以接下来的讨论主要是基于 InnoDB 引擎的 B+Tree 索引来讨论,其他的哈希索引全文索引等不在讨论范围种。 1. 与联合索引重复 在前面的文章中,松哥通过好几篇文章和大家分享了联合索引,包括它涉及到的覆盖索引、前缀匹配等等,联合索引好用,但是对联合索引理解不到位的话,可能会创建出如下的重复索引: CREATE
主键索引(Primary Key Index):每个表都有一个主键,主键索引是自动创建的唯一索引。它通常是聚簇索引(在索引树的叶子结点中存储的是需要查找的数据)。
最左优先,以最左边的为起点任何连续的索引都能匹配上。同时遇到范围查询(>、<、between、like)就会停止匹配。
作为开发人员数据库查询语句我们经常用到,但是你是否想过为什么大厂都会强制开发人员禁止使用 SELECT * 语句?你一定会说因为效率低啊,多差除了一些无用的数据。如果是这么想的,那就继续听我来说。
联合索引又叫复合索引,是MySQL的InnoDB引擎中的一个索引方式,如果一个系统频繁地使用相同的几个字段查询结果,就可以考虑建立这几个字段的联合索引来提高查询效率。
面试中,MySQL 索引相关的问题基本都是一系列问题,都是先从索引的基本原理,再到索引的使用场景,比如:
如果一个表没有主键索引依旧会创建B+树 在InnoDB中,会为每一张表创建一个主键索引,如果没有明确的主键索引,会使用一个隐藏(ROW ID)的、自动生成的主键来创建索引。建议每个表都添加主键索引。
当MySQL使用一个索引来检索表中的行时,可以使用ICP作为一种优化方案。不使用ICP时,存储引擎通过索引检索基础表中的行并将符合WHERE条件中的行返回给客户端。启用ICP后,如果只需要通过索引中的列就能够评估行是否符合WHERE中的一部分条件,MySQL将这部分WHERE条件下推到存储引擎中,然后存储引擎评估使用索引条目来评估下推的索引条件,并只从表中读取符合条件的行。ICP可以减少存储引擎访问基础表的次数以及MySQL访问存储引擎的次数。
最左匹配原则就是指在联合索引中,如果你的 SQL 语句中用到了联合索引中的最左边的索引,那么这条 SQL 语句就可以利用这个联合索引去进行匹配。例如某表现有索引(a,b,c),现在你有如下语句:
联合索引的最左前缀原则属于面试高频题,想必大部分同学都知道一些,但是,那些不符合最左前缀的部分,会怎么样呢(索引下推)
之前写过一篇Mysql B+树学习,简单的介绍了B+数以及MySql使用B+树的原因, 有了这些基础知识点,对MySql索引的类型以及索引使用的一些技巧,就比较容易理解了。
在之前大白话mysql之深入浅出索引原理 - 上这篇文章中提到过,mysql 的 innodb 引擎通过搜索树方式实现索引,索引类型分为主键索引和二级索引(非主键索引),主键索引树中,叶子结点保存着主键即对应行的全部数据;而二级索引树中,叶子结点保存着索引值和主键值,当使用二级索引进行查询时,需要进行回表操作。假如我们现在有如下表结构。
索引是提高关系型数据库查询性能的利器,但其并非银弹,必须精通其原理,才能发挥奇效。
为了验证 MySQL 中哪些情况下会导致索引失效,我们可以借助 explain 执行计划来分析索引失效的具体场景。
MySQL 中的 Memory 存储引擎支持 Hash 存储,如果我们需要用到查询的临时表时,就可以选择 Memory 存储引擎,把某个字段设置为 Hash 索引
由以下三张图的key_len字段我们可以得出三个索引的长度分别为:title长303,author长122,price长5.
只要说到联合索引,大家肯定都会想到“最左匹配”,相信不用解释大家也知道是啥意思,也很简单,但是联合索引中又有不少特殊情况,
稍不注意,可能你写的查询语句是会导致索引失效,从而走了全表扫描,虽然查询的结果没问题,但是查询的性能大大降低。
这篇文章会讲解索引的基础知识,但主要是关于MySQL数据库的B+树索引的相关原理,里面的一些知识都参考了MySQL技术内幕这本书,也算对于这些知识的总结。对于B树和B+树相关的知识,可以参考我的这篇博客:面试官问你B树和B+树,就把这篇文章丢给他
为了更好地进行解释,我创建了一个存储引擎为InnoDB的表user_innodb,并批量初始化了500W+条数据。包含主键id、姓名字段(name)、性别字段(gender,用0,1表示不同性别)、手机号字段(phone),并为name和phone字段创建了联合索引。
👋 你好,我是 Lorin 洛林,一位 Java 后端技术开发者!座右铭:Technology has the power to make the world a better place.
在关系数据库中,索引是一种数据结构,为存储引擎提高访问速度的数据结构,它一般是以包含索引键值和一个指向索引键值对应数据记录物理地址的指针的节点的集合的清单的形式存在。
我们在面试中都知道,对于MySQL索引是必问的。大家也应该都知道MySQL的数据结构,什么是索引。其中在面试中,面试官也经常问,你做过哪些优化?本文主要是介绍MySQL索引的一些常见术语,比如索引下推、索引覆盖、最左匹配等,这些其实也是MySQL优化的一部分,能够熟练运用也是可以提升MySQL性能。
按照ER图,建立数据库和表,并且进行测试数据的填充。(建表sql和填充脚本的文件可公众号(Vegout)回复关键字“联合索引”获取)
在上一篇文章中,我们介绍了InnoDB索引的数据结构模型,今天我们再继续聊一下跟MySQL索引有关的概念。
相信很多人对于MySQL的索引都不陌生,索引(Index)是帮助MySQL高效获取数据的数据结构。
唯一索引(unique): 插入的数据不能重复,但是可插入索引字段为null,且可重复多次
小伙伴想精准查找自己想看的MySQL文章?喏 → MySQL专栏目录 | 点击这里
假设在表tb_user中包含有两个字段age和phone,我们想通过这两个字段进行排序,且事先我们没有创建age和phone字段的索引,直接进行order by排序:
上面ID索引树进行查找记录的过程叫回表,可以看出k树索引树进行了三次查询,Id索引树进行了两次查询。查询数据过程中是否可以避免回表查询呢,
他创建了一张数据库表,表里的字段只有主键索引(id)和联合索引(a,b,c),然后他执行的 select * from t where c = 0; 这条语句发现走的是索引,他就感觉很困惑,困惑在于两点:
用python连接数据库 pymysql pip install pymysql #如果让你装vs环境, 执行以下命令升级pip即可 python -m pip install --upgrade pip 连接数据库 数据库设置 MYSQL_CONF = { "host": "127.0.0.1", "user": "root", "password": "qwe369", "db": "test" } 连接 # 连接数据库 mysql_con = pymysql.conn
如果使用覆盖索引就可以不回表扫描。 索引类型:InnoDB引擎,默认B+树(O(logN))、Hash索引 B树索引 O(1)
今天楼主给大家列一下关于数据库几个常见问题的要点,如果大家对其中的问题感兴趣,可以自行扩展研究。
如果查询条件使用的是普通索引(或是联合索引的最左原则字段),查询结果是联合索引的字段或是主键,不用回表操作,直接返回结果,减少IO磁盘读写读取正行数据
索引的目的在于提高查询效率,可以类比字典,比如当我们要查 “mysql” 这个单词,我们肯定需要定位到 ‘m’ 字母,然后从下往下找到 ‘y’ 字母,再找到剩下的 “sql”。如果没有索引,那么我们可能需要把所有单词看一遍才能找到想要的。
上一篇我们说到了关于MySQL的索引的原理,主要说的是 MySQL 对于索引的字段是怎么去维护的,我们再来简单的回顾下:
性能优化(Optimize)指的是在保证系统正确性的前提下,能够更快速响应请求的一种手段。而且有些性能问题,比如慢查询等,如果积累到一定的程度或者是遇到急速上升的并发请求之后,会导致严重的后果,轻则造成服务繁忙,重则导致应用不可用。它对我们来说就像一颗即将被引爆的定时炸弹一样,时刻威胁着我们。因此在上线项目之前需要严格的把关,以确保 MySQL 能够以最优的状态进行运行。同时,在实际工作中还有面试中关于 MySQL 优化的知识点,都是面试官考察的重点内容。
转于:https://blog.csdn.net/claram/article/details/77574600
领取专属 10元无门槛券
手把手带您无忧上云