在今天的数据驱动世界中,ORDER BY RAND()成为了一个强大的SQL技巧,帮助开发者从数据库中随机选取数据。无论是MySQL, PostgreSQL, SQLite还是SQL Server,每种数据库都有其独特方式实现随机化查询。本文将深入浅出地讲解ORDER BY RAND()的用法,适配不同数据库,并提供实战案例。适合所有级别的读者,包括SQL新手和数据库专家。掌握这一技巧,将为你的数据查询带来无限可能!
从这个题目来看,其实包含了两个要求,第一个要求就是:从MySQL数据表中查询一条随机的记录。第二个要求就是要保证效率最高。
决定一个水桶容量的,是最短的一块板子,MySQL也不例外,MySQL服务器的性能受制于整个系统的磁盘大小、可用内存、CPU资源,网络带宽等等,这其中,最常见的两个性能瓶颈因素是CPU和IO资源。
上篇文章MySQL的优化利器:索引条件下推,千万数据下性能提升273%🚀,我们说到MySQL中server层与存储引擎层的交互、索引、回表、ICP等知识(有不理解的概念可以看上篇文章哈~)
在探索数据库优化的广阔领域中,我们不可避免地会遇到一系列独特的概念和技术。其中之一就是MySQL的多范围读取(Multi-Range Read, MRR)。
一 介绍 MySQL 5.6版本提供了很多性能优化的特性,其中之一就是 Multi-Range Read 多范围读(MRR) , 它的作用针对基于辅助/第二索引的查询,减少随机IO,并且将随机IO转化为顺序IO,提高查询效率。 二 原理 在没有MRR之前,或者没有开启MRR特性时,MySQL 针对基于辅助索引的查询策略是这样的:
当我们请求去查询一条记录,先到redis中查询后到mysql查询都发现找不到该条记录,但是请求每次都会打到数据库上面去,导致后台数据库压力暴增,这些请求像“穿透”了缓存一样直接打在数据库上,这种现象就叫做缓存穿透。这种现象我们称为缓存穿透,这个redis变成了一个摆设。
Mycat 自身提供了一套基准性能测试工具,这套工具可以用于性能测试、疲劳测试等,包括分片表插入性能测试、分片表查询性能测试、更新性能测试、全局表插入性能测试等基准测试工具。
相信每一个后台开发工程师在面试过程中,都曾经被问到过“MySQL的默认存储引擎是什么?MySQL索引是什么数据结构?”这样的问题。相信准备充分(熟读八股文)的大家都能很容易的回答出“MySQL的默认存储引擎是InnoDB,MySQL索引使用的是B+树。”这样的答案。但是为什么当初写MySQL的程序员大叔要这样子来设计呢?
前段时间笔者开发某个项目遇到了MySQL性能问题,每张表的数据量都在五千万以上,个别表数据量甚至在一个亿以上,在开发的过程中遇到了非常多的数据库性能优化难点,笔者在开发过程中查询了很多资料,很多查询语句也在优化过程中取得了比较好的效果。笔者也将开发过程中遇到的sql优化问题总结为文章,以便日后回顾。这篇文章主要讲解mysql执行联结运算的原理。为了避免泄露公司业务及数据,在文章中涉及的sql语句都和公司业务无关。
在我还没来到这个世界上的时候,MySQL过的很辛苦,互联网发展的越来越快,它容纳的数据也越来越多,用户请求也随之暴涨,而每一个用户请求都变成了对它的一个又一个读写操作,MySQL是苦不堪言。尤其是到“双11”、“618“这种全民购物狂欢的日子,都是MySQL受苦受难的日子。
内容概要 利用主索引提升SQL的查询效率是我们经常使用的一个技巧,但是有些时候MySQL给出的执行计划却完全出乎我们的意料,我们预想MySQL会通过索引扫描完成查询,但是MySQL给出的执行计划却是通过全表扫描完成查询的,其中的某些场景我们可以利用覆盖索引进行优化。 前些天,有个同事跟我说:“我写了个SQL,SQL很简单,但是查询速度很慢,并且针对查询条件创建了索引,然而索引却不起作用,你帮我看看有没有办法优化?”。 我对他提供的case进行了优化,并将优化过程整理了下来。 优化前的表结构、数据量、SQL、
SQL报错注入就是利用数据库的某些机制,人为地制造错误条件,使得查询结果能够出现在错误信息中。这种手段在联合查询受限且能返回错误信息的情况下比较好用。
在关系型数据库中设计索引其实并不是复杂的事情,很多开发者都觉得设计索引能够提升数据库的性能,相关的知识一定非常复杂。 然而这种想法是不正确的,索引其实并不是一个多么高深莫测的东西,只要我们掌握一定的方
本篇文章给大家带来的内容是关于Mongodb与MySQL之间的比较分析,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
之前的推文已经分享了数据库优化的方法,链接为https://mp.weixin.qq.com/s/6Atzk9UKPJRxxAs0nsKBXg 。其中操作系统部分介绍了IO调度算法的优化,本文将通过压力测试的方式来对比不同的调度算法下磁盘IO的表现。
写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点。考虑如下情况,假设数据库中一个表有10^6条记 录,DBMS的页面大小为4K,并存储100条记录。如果没有索引,查询将对整个表进行扫描,最坏的情况下,如果所有数据页都不在内存,需要读取10^4 个页面,如果这10^4个页面在磁盘上随机分布,需要进行10^4次I/O,假设磁盘每次I/O时间为10ms(忽略数据传输时间),则总共需要 100s(但实际上要好很多很多)。如果对之建立B-Tree索引,则只需要进行log100(10^6)=3次页面读取,最坏情况下耗时30ms。这就 是索引带来的效果,很多时候,当你的应用程序进行SQL查询速度很慢时,应该想想是否可以建索引。进入正题:
数据库读写分离对于大型系统或者访问量很高的互联网应用来说,是必不可少的一个重要功能;对于MySQL来说,标准的读写分离是主从模式,一个写节点Master后面跟着多个读节点,其中包含两个步骤,其一是数据源的主从同步,其二是sql的读写分发;而Mycat不负责任何数据的同步,具体的数据同步还是依赖Mysql数据库自身的功能。
作为一个后端工程师,想必没有人没用过数据库,跟我一起复习一下MySQL吧,本文是我学习《MySQL实战45讲》的总结笔记的第五篇,总结了MySQL索引相关的实践使用问题。
这个问题我们可以从两个角度去解答。一个是100G的数据量用MySQL和MongoDB在存读取上有什么区别,另一个是数据本身的结构和你要进行的应用来考虑使用哪种数据库比较方便。
最近在重新整理复现MYSQL注入天书,遇到了一条很有意思的报错注入的payload:
下载地址:https://github.com/akopytov/sysbench/archive/refs/tags/1.0.20.tar.gz
即没有特别指明的类型,大多数时候mysql 引擎都支持这种索引(Archive 是例外, 5.1 之前不支持,之后支持单个自增列的索引)
在对系统进行压测时有时要进行局部压测,比如对数据库的读写性能压测,使用过数据库以及搜索引擎的小伙伴相信对缓存这个东西一定不会陌生,如果我们在对数据库或者es之类的搜索引擎进行压测时一定要采用随机的参数,否则压测意义就不大了,因为从缓存返回数据跟从io读取数据后返回是两码事,这两种情况在性能上相差太大,当然是用一定固定值进行压测也不符合实际生产过程中使用场景,本文主要介绍一种使用jmeter压测mysql数据库时的一种随机参数生成方式,当然这也不符合实际应用场景,尤其是一些涉及多个关联查询的情况,如果一个查询查不到可能直接返回了,这样也不够真实,更真实一些的方式应该是将系统中已有的数据放在jmeter中进行压测,本文先简单介绍下jmeter随机参数压测mysql的方法:
有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms);
昨天跟同事聊起数据表性能的问题,能不能仅用覆盖索引实现数据的汇总统计。找了一个开发环境已有的数据表进行测试,通过explain命令,能看到mysql通过覆盖索引就能实现sum的需求,而无须去读取实际行数据。
本人混迹qq群2年多了,经常听到有人说“数据表太大了,需要分表”,“xxxx了,要分表”的言论,那么,到底为什么要分表?
工作中会遇到从数据库中随机获取一条或多条记录的场景,下面介绍几种随机获取的方法供参考。
没有特殊要求(即Innodb无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用Innodb存储引擎(mysql5.5之前默认使用Myisam,5.6以后默认的为Innodb) Innodb 支持事务,支持行级锁,更好的恢复性,高并发下性能更好。
· 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)
没有特殊要求(即 Innodb 无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用 Innodb 存储引擎(MySQL5.5 之前默认使用 Myisam,5.6 以后默认的为 Innodb)。
没有特殊要求(即Innodb无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用Innodb存储引擎(mysql5.5之前默认使用Myisam,5.6以后默认的为Innodb)Innodb 支持事务,支持行级锁,更好的恢复性,高并发下性能更好
我们知道,当limit offset rows中的offset很大时,会出现效率问题:
https://www.cnblogs.com/huchong/p/10219318.html
MySQL5.6版本开始支持Multi-Range Read(MRR)优化。Multi-Range Read优化的目的就是为了减少磁盘的随机访问,并且将随机访问转化为较为顺序的数据访问,这对于IO-bound类型的SQL查询语句可带来性能极大的提升。Multi-Range Read优化可适 用于range,ref,eq_ref类型的查询。
机器之心专栏 机器之心编辑部 本文中,浙大的研究者提出了一种名为 Transformed Query Synthesis(TQS)的方法。在运行了 24 小时后,TQS 成功找到了 115 个漏洞,包括 MySQL 中 31 个、MariaDB 中 30 个、TiDB 中 31 个、PolarDB 中 23 个。 2023 年度的 ACM SIGMOD/PODS 国际数据管理大会(SIGMOD 2023)将于当地时间 6 月 18-23 日在美国西雅图举办。近日,该会议公布了最佳论文名单,微软研究院的《Pr
•所有数据库对象名称必须使用小写字母并用下划线分割•所有数据库对象名称禁止使用 MySQL 保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)•数据库对象的命名要能做到见名识意,并且最后不要超过 32 个字符•临时库表必须以 tmp_为前缀并以日期为后缀,备份表必须以 bak_为前缀并以日期 (时间戳) 为后缀•所有存储相同数据的列名和列类型必须一致(一般作为关联列,如果查询时关联列类型不一致会自动进行数据类型隐式转换,会造成列上的索引失效,导致查询效率降低)
首先需要澄清的一点是,MySQL 跟 B+ 树没有直接的关系,真正与 B+ 树有关系的是 MySQL 的默认存储引擎 InnoDB,MySQL 中存储引擎的主要作用是负责数据的存储和提取,除了 InnoDB 之外,MySQL 中也支持 MyISAM 作为表的底层存储引擎。
领取专属 10元无门槛券
手把手带您无忧上云