导语 | 伴随着Snowflake的成功,重新激活了数据分析市场,大大小小的创业公司不断创立,各种OLAP的开源产品层出不穷。其中,ClickHouse凭借优秀的性能在用户行为分析、ABTest、在线报表等多个领域大放异彩,但其在功能特性、易用性等方面都还有较多不足。同时,在OLTP、对象存储、Elasticsearch、MongoDB等系统中累积了大量数据和分析需求,不能较好的得到满足。因此,我们希望以Clickhouse为基础,借鉴Snowflake的设计思路,打造一款高性能的云原生OLAP数仓,为用户提供多数据源、多场景下的一站式数据分析平台。
开源数据库中有一堆冤家,我想大家都知道,那就是MySQL与Postgre SQL。两个派系的恩怨情仇从何而来,今天我们将从非技术的角度来进行分析。 本文仅代表个人观点,如有不同意见欢迎交流。 说明:本文主要的关注点,是MySQL与PostgreSQL的非技术比较。 简单评价 MySQL流行较多,PostgreSQL功能更全面。其主要原因是,MySQL很早的时候,就支持主从复制,在互联网起步(2000年后第一次互联网大潮)的时候,被广泛使用。PostgreSQL到2010年左右才首次支持主从复制,无法作为互
c++ modules已经正式纳入了c++20草案,msvc和clang也已经基本实现了对modules-ts的支持,随着c++20的脚步离我们越来越近,xmake也开始对c++modules提前做好了支持。
今天聊下几类关系型数据库的数据解决方案,算是抛砖引玉,近期也要对技术方向上做一些扩展,也算是前期的小结吧。 Oracle 目前市面上的主流版本应该还是11gR2,记得很多年前有个网站做过一次调查,10g,11g的版本比例差不多是6:3,我想现在11gR2的版本比例应该能够占到90%以上,剩下的份额应该是12c的,现在用10g版本的数据库是少之又少,更早版本的除非业务足够稳定,实在是找不出什么理由不升级了。 来简单说说Oracle的方案。 从灾备的角度来说,那就是毫无悬念的Oracle Data Gu
关于数据仓库,早期分享过不少基础类文章,偶然间看到知乎上这篇关于OLAP的深度解读,从技术发展,产品选型,执行优化等方面做了详细的剖析,分享来给大家看看!
服务编程 Akka Toolkit:JVM中分布性、容错事件驱动应用程序的运行时间; Apache Avro:数据序列化系统; Apache Curator:Apache ZooKeeper的Java库; Apache Karaf:在任何OSGi框架之上运行的OSGi运行时间; Apache Thrift:构建二进制协议的框架; Apache Zookeeper:流程管理集中式服务; Google Chubby:一种松耦合分布式系统锁服务; Linkedin Norbert:集
今天为大家推荐一些翻译整理的大数据相关的非常棒的学习资源,希望能给大家一些帮助。 服务编程Akka Toolkit:JVM中分布性、容错事件驱动应用程序的运行时间; Apache Avro:数据序列化
在访问量和数据量急剧膨胀的今天,关系型数据库已经难以支撑庞大复杂的系统规模。在此背景下,备受关注的数据库新理念 HTAP,会是一条“正确”的路吗?在刚过去的 QCon 全球软件开发大会上,PingCAP 实时分析产品负责人马晓宇发表了《TiDB HTAP 的架构演进及实践》的主题演讲,它从 HTAP 的历史入手,详述了 HTAP 的技术挑战以及 TiDB 的应对方案。本文为其演讲整理文,enjoy~ 大家好,今天为大家分享以下几方面内容。首先是分享 HTAP 的历史,其次是 TP 和 AP 之间存储和计算的
最近的几年中,HTAP 数据库成为了一个时髦词汇,言必称 HTAP 也成了很多数据库领域从业者的风潮。如何打造一款 HTAP 数据库,从架构层面出发,去应对未来的变化,拥抱变化,也是很多数据库公司所一直在探索的。
从数据库架构设计的角度,主要有三种,Shared Everything、Shared Disk以及Shared Nothing。
这个问题不少小伙伴在面试时都遇到过,因为对MPP这个概念了解较少,不少人都卡壳了,但是我们常用的大数据计算引擎有很多都是MPP架构的,像我们熟悉的Impala、ClickHouse、Druid、Doris等都是MPP架构。
OLAP(On-Line Analytical Processing)即联机分析处理,通过对数据大量分析,得出分析报告,提供决策支持,其侧重数据分析能力,比喻说用户行为分析。
学习数仓的时候,可能一开始总是被一些英文缩写名字迷惑,OLAP MPP架构 KAPPA架构 ODS等等,这篇文章就来梳理一下这些基本概念。
当你的才华还撑不起你的野心时,请潜下心来,脚踏实地,跟着我们慢慢进步。不知不觉在单细胞转录组领域做知识分析也快两年了,通过文献速递这个栏目很幸运聚集了一些小伙伴携手共进,一起成长。
本文由 PingCAP 研发工程师雷宇分享,主要从宏观角度分析 TiDB 究竟能做什么,创造什么样的价值,以及研发过程中的一些设计立足点。 文章将从四个部分分享:
随着数据量的增大,传统数据库如Oracle、MySQL、PostgreSQL等单实例模式将无法支撑大量数据的处理,数据仓库采用分布式技术成为自然的选择。 6.2.1 MPP的概念 在讨论MPP DB之前,我们先把MPP本身的概念搞清楚。MPP是系统架构角度的一种服务器分类方法。 从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构(Symmetric Multi-Processor,SMP)、非一致存储访问结构(Non-Uniform Memory Access,NUMA),以及海量并行处
自 TiDB 5.0 发布以来,陆续在金融、互联网 & 新经济、物流等行业用户的生产环境得到应用,收获不少用户的积极评价:
MPP (Massively Parallel Processing),即大规模并行处理。
在胚胎发育过程中,造血干细胞(HSCs)需要快速分化为成熟的血细胞。我们目前对胎儿造血干细胞和祖细胞(HSPC)的了解主要是通过小鼠和体外模型系统来推进的。关于人类发育过程中的造血调控仍不明确。
Doris由百度大数据部研发,之前叫百度Palo,于2017年开源,2018年贡献到 Apache 社区后,更名为Doris。
数据库构架设计中主要有Shared Everthting、Shared Nothing、和Shared Disk:
2023年1月,华大自主单细胞DNBelab C系列平台助力中国科学院大学、华大、深圳儿童医院等多家科研团队,于Clinical and Translational Medicine(影响因子8.554)发表题为“Stemness-related genes revealed by single-cell profiling of naïve and stimulated human CD34+ cells from CB and mPB”的文章,揭示了与细胞来源和培养时间相关的干性相关基因(Stemness-related genes, SRG),为理解HSC的干性提供有益见解。
Doris 是分布式、面向交互式查询的分布式数据库,主要部分是 SQL,内部用到 MPP 技术。
我们公司主要从事平台技术开发和建设方面,工作的重点方向主要在解决用户在数据治理中的各种问题,让用户能更高效地管理自己的数据,进而产生更大的价值,比如如何整合现有功能流程,节省用户使用成本;增加新平台不断调研,丰富平台功能;新平台功能、性能改造,从而满足用户大规模使用需求;根据业务实际需求,输出相应的解决方案等。今天分享的内容主要是从数据库内核到大数据平台底层技术开发,分享网易数据科学中心多年的大数据建设经验。
根据阿里云数据库公众号的消息,4月17日,第十五届中国电子信息技术年会上正式颁发2020年中国电子学会科学技术奖,阿里云自研的“云原生分布式关系型数据库PolarDB”项目获得科技进步一等奖。这也是继飞天云操作系统之后,阿里云第二次自研技术获此殊荣。
ByteHouse云数仓版是字节跳动数据平台团队在复用开源 ClickHouse runtime 的基础上,基于云原生架构重构设计,并新增和优化了大量功能。在字节内部,ByteHouse被广泛用于各类实时分析领域,最大的一个集群规模大于2400节点,管理的总数据量超过700PB。本分享将介绍ByteHouse云原生版的整体架构,并重点介绍ByteHouse在查询上的优化(如优化器、MPP执行模式、调度优化等)和对MySQL生态的完善(基于社区MaterializedMySQL功能),最后结合实际应用案例总结优化的效果。
1、跟Hadoop生态系统完好结合,可与Hive Metastore对接,处理hive中的表,可直接处理存储在HDFS和Hbase中的数据。
前两天在刷朋友圈,看到一个视频号链接,说有个云数仓,比ClickHouse 还快3倍。我就点进去看了,原来是 SelectDB 公司的“为数而生,因云而新” SelectDB 产品发布会。这个发布会上 SelectDB 发布了云数仓产品 SelectDB Cloud。
数据仓库是公司数据发展到一定规模后必然需要提供的一种基础服务,也是“数据智能”建设的基础环节。早期数仓多为离线模式,主要处理的是 T+1 的数据,随着互联网时代的到来,实时数据处理的场景日益增多,离线数仓已无法满足业务发展的实时性需求。为更好的解决业务场景的实时化需求,实时数仓建设已成必然趋势,这也是 HTAP 数据库的重要能力之一。
clickhouse准备 本地表 create table student on cluster luopc_mpp_cluster ( id UInt8, name String, age UInt8, create_time Datetime ) engine =ReplicatedMergeTree('/clickhouse/tables/{shard}/student','{replica}') primary key (id) order by (id,a
MPP:Massively Parallel Processing, 即大规模并行处理.
对于很多程序员来说,公司选择什么样的数据库,基本不需要你来决定。当你加入一个公司的时候,公司的大部分技术选型已经确认,特别是数据库选型,因为数据库一旦选择,后期迁移的代价还是很大的。
行式数据库是按照行存储的,行存储就是各行放入连续的物理位置,就行我们平时写字一样,一行一行的写,读取的时候也是一行一行的读取。像SQL server,Oracle,mysql等传统的关系型数据库都属于行式数据库范畴。
我们很高兴向大家宣布,TiDB 6.1 于 6 月 xx 日发布了,这是 TiDB 6 系版本的第一个长期支持版(Long Term Support)。
这个版本没啥太大新特性,主要对c++20 modules进行了实验性支持,目前支持clang/msvc编译器,除此之外改进了不少使用体验,并且提高了一些稳定性。
本篇分享下个人在实时数仓方向的一些使用经验,主要包含了ClickHouse 和 StarRocks 这两款目前比较流行的实时数仓,文章仅代表个人拙见,有问题欢迎指出,Thanks♪(・ω・)ノ
Apache Doris 是一个基于 MPP 架构的高性能、实时的分析型数据库,以极速易用的特点被人们所熟知,仅需亚秒级响应时间即可返回海量数据下的查询结果,不仅可以 支持高并发的点查询场景,也能支持高吞吐的复杂分析场景 。基于此,Apache Doris 能够较好的满足报表分析、即席查询、统一数仓构建、数据湖联邦查询加速等使用场景,用户可以在此之上构建用户行为分析、AB 实验平台、日志检索分析、用户画像分析、订单分析等应用。
前段时间收到吴老师的邀请,是参加青云QingCloud分布式数据库(RadonDB)的一个技术体验活动,从今天的技术体验来算,收获还是很多的,大家相聊甚欢,交流了很多工作中和工作之外的想法,原来那些我们看起来难走的路大家都曾经走过。
每个人的时间精力有限,必须优先阅读相关文献,开设这个栏目也是希望为大家推荐高质量的单细胞相关文献。如果大家对单细胞转录组感兴趣可以关注一下,哪怕每天只学一点点,积土成山,积水成渊。
Greenplum是老牌的MPP数据仓库,查询稳定性很强,SQL支持非常全面(支持ANSI SQL 2008和SQL OLAP 2003扩展;支持ODBC和JDBC应用编程接口。完善的标准支持使得系统开发、维护和管理都大为方便。),基于PostgreSQL构建而成,主要面向结构化数据OLAP计算,Greenplum在6.0版本大大的提高了对OLTP的支持,tpcb性能提升60倍,单节点查询达到80000TPS(Transactions Per Second,数据库每秒处理事务数),插入操作达到18000TPS,更新操作约7000TPS。
一、 除了日志数据,关系数据库中的数据也是数据分析的重要来源。在数据的采集方式上,用Spark实现类 Sqoop 的分布式抓取替代了早期定期用单机全量抓取 MySQL 数据表的方式,有效的提升了抓取速度,突破了单机瓶颈。
OLAP是英文Online Analytical Processing的缩写,中文称为联机分析处理。它是一种基于多维数据模型的分析处理技术,用于从不同的角度进行数据挖掘和分析,以帮助用户快速发现数据之间的相关性和趋势。
本文根据肖康在【第十三届中国数据库技术大会(DTCC2022)】线上演讲内容整理而成。
转载来源: https://www.cnblogs.com/ivan-uno/p/9051225.html
一、OALP 引擎汇总整理引擎优势不足适合场景文档Kylin1、支持标准SQL,提供JDBC/ODBC接口2、通过预计算Cube显著降低查询时的计算量。3、支持精确去重计数,并且由于预计算,查询去重指标的速度很快。4、可以支持比较高的查询并发。1、需大量资源做预计算,数据导入效率低。2、schema变更需重跑历史,稳定性低。3、需要学习Cube定义和优化,学习成本较高。4、不支持AdHoc查询。5、HBase没有二级索引,过滤的性能稍逊色。5、支持的维度数量不宜过多(20),否则Cube的计算和存储开销会明
美团外卖数据仓库技术团队负责支撑日常业务运营及分析师的日常分析,由于外卖业务特点带来的数据生产成本较高和查询效率偏低的问题,他们通过引入Apache Doris引擎优化生产方案,实现了低成本生产与高效查询的平衡。并以此分析不同业务场景下,基于Kylin的MOLAP模式与基于Doris引擎的ROLAP模式的适用性问题。希望能对大家有所启发或者帮助。
我在实习僧App上发现一家公司非常匹配我的需求~ 城市匹配 技能匹配 福利匹配 还是一家游戏公司 (典型的钱多离家近,事估计少不了了 ) 三配下来我不得不认真研究该公司的职位要求:
随着云时代的到来,数据库也开始拥抱云数据库时代,各类数据库系统(OLTP、OLAP、NoSQL等)在各内外云平台(AWS、Azure、阿里云)百花齐放,有开源的MySQL、PostgreSQL、MongoDB,传统数据库厂商的SQLServer、Oracle,云厂商自研的Aurora、Redshift、PolarDB、AnalyticDB、AzureSQL等。有些数据库还处于Cloud Hosting阶段,仅仅是将原有架构迁移到云主机上,利用了云的资源。有些数据库则已经进入了Cloud Native阶段,基于云平台IAAS层的基础设施,构建弹性、serverless、数据共享等能力。
领取专属 10元无门槛券
手把手带您无忧上云