上节课我们给大家介绍了常用的MySQL多表联合查询用法,知道了left join /right join /inner join 的基本用法。具体请回顾关于MySQL多表联合查询,你真的会用吗?本节课我们继续展开讲讲MySQL多表联合查询的其他用法——全连接与笛卡尔连接。
随着MySQL版本的发展,优化器是越来越智能,优化器开关也越来越多,本文给大家分享一下MySQL对derived table的优化处理。
SELECT * FROM (SELECT * FROM t1) AS derived_t1;
索引合并是MySQL查询优化器在处理复杂查询条件时使用的一种技术。简单来说,当WHERE子句中有多个条件,并且每个条件都可以利用不同的索引时,优化器会考虑将这些索引的扫描结果合并,从而得到最终的结果集。
在MySQL 8.0.17中,我们在TPC-H基准测试中观察到一个特定的查询。该查询的执行速度比MySQL 8.0.16快20%。这项改进的原因是实施了“ antijoin”优化。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
相信这内连接,左连接什么的大家都比较熟悉了,当然还有左外连接什么的,基本用不上我就不贴出来了。这图只是让大家回忆一下,各种连接查询。 然后要告诉大家的是,需要根据查询的情况,想好使用哪种连接方式效率更高。
前文我们讨论过MySQL优化回表的多种方式:索引条件下推ICP、多范围读取MRR、覆盖索引等
作为一个后端工程师,想必没有人没用过数据库,跟我一起复习一下MySQL吧,本文是我学习《MySQL实战45讲》的总结笔记的第三篇,总结了MySQL的索引相关知识。
其实我们之前所讲的回表,就是两个索引树同时使用,先在二级索引树中搜索到对应的主键值,然后在再去主键索引树中查询完整的记录。 但是我今天的问题是,两个不同的二级索引树,会同时生效吗?理论上来说,应该是可以同时生效的,不然这个 MySQL 也太笨了。不过根据松哥日常开发经验,这种事情最好能够避免,如果发生了同时搜索两棵索引树的事情,大概是你的索引设计有问题,此时就要去检查一下索引的设计是否合理。 加粗的是实践经验,但是对于两个索引同时生效的知识点,我们还是要懂,一起来看下。 1. 索引合并 例如我有如下一张表结
数据库如何判定,当前这一条记录是重复的?先查找,再插入。但是加上约束之后,数据库的执行过程可能就变了。因此执行时间或者效率会受到很大影响。
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
指出MySQL能使用哪个索引在表中找到记录,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用(该查询可以利用的索引,如果没有任何索引显示 null)
上篇文章我们说了,使用索引的注意事项,前面我们总结了查询数据库的方式有const,ref,ref_or_null,range,index,all,而使用时候需要注意,当where语句后面全是索引查询,当where语句后面跟着非索引的时候,当用and连接,比如where key1 and 非索引 = ‘abc’,这时候会先二级索引查询索引b+树进行回表。若用where key1 or 非索引 = ‘abc’,这时候会直接全表查询。
MySQL Hints是一组特殊的注释或指令,可以直接嵌入到SQL查询中,以改变MySQL优化器的默认行为。这些Hints通常被用于解决性能问题,或者当开发者比优化器更了解数据分布和查询特性时,来指导优化器选择更好的查询计划。
基本概念: 可合并多个相似的选择查询结果的结果集,等同于将一个表追加到另一个表,从而实现将两个表的查询结果组合到一起,使用 Union 或 Union all。 注意: 这个合并是纵向合并,字段数不变,多个查询的结果合并。
昨天介绍了 MySQL 数据库使用 LIKE 子句来进行筛选查询,今天主要讲解下 MySQL UNION 操作符。
1、为什么要分表? 数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。
“你一定又写了烂SQL了!”,“你怎么这样凭空污人清白……慢查询,慢查询不能算烂……慢查询!……程序猿的事,能算烂么?” 本文从SQL执行效率方面略作研究,偏向基础性总结,但力求详实准确。如果有大佬误入此地,还请从容撤退,如果你真的愿意看,我也没什么意见。
13年底负责数据库中间件设计时的调研笔记,拿出来和大家分享,轻拍。文章很长,可提前收藏,转发。 一,cobar是什么 开源的mysql的中间件服务 使用mysql协议 对上游,cobar就是传统mys
对应的是限制条件(格式类似“field<op>consant”, field表示列对象,op是操作符如"="、">"等)。
MySQL分区 是一种数据库优化的技术,它允许将一个大的表、索引或其子集分割成多个较小的、更易于管理的片段,这些片段称为“分区”。每个分区都可以独立于其他分区进行存储、备份、索引和其他操作。这种技术主要是为了改善大型数据库表的查询性能、维护的方便性以及数据管理效率。
在MySQL中,执行计划是优化器根据查询语句生成的一种重要的数据结构,它描述了如何通过组合底层操作实现查询的逻辑。当我们编写一条SQL语句时,MySQL会自动对其进行优化,并生成最优的执行计划以实现更快的查询速度。
调用EXPLAIN可以获取关于查询执行计划的信息,以及如何解释输出。EXPLAIN命令是查看查询优化器如何决定执行查询的主要方法,但该动能也有局限性,它的选择并不总是最优的,展示的也并不一定是真相。
一个好的web应用,最重要的一点是有着优秀的访问性能。数据库MySQL是web应用的组成部分,也是决定其性能的重要部分。所以提升MySQL的性能至关重要。
本文想和大家来聊聊Mysql中的执行计划,一条SQL语句经过了查询优化器模块分析后,会得到一个执行计划,通过这个执行计划,我们可以知道该条SQL语句具体采用的多表连接顺序是什么,对于每个表具体采用的访问方法是什么 . . .
先看看具体有哪些字段: mysql> EXPLAIN SELECT 1; 其实除了以SELECT开头的查询语句,其余的DELETE、INSERT、REPLACE以及UPDATE语句前边都可以加上EXPLAIN这个词儿,用来查看这些语句的执行计划 建两张测试表: CREATE TABLE t1 ( id INT NOT NULL AUTO_INCREMENT, key1 VARCHAR(100), key2 VARCHAR(100), key3 VARCHAR(100),
此优化方案指的是通过优化 SQL 语句以及索引来提高 MySQL 数据库的运行效率,具体内容如下:
数据库 db 数据库 dba 数据库工程师 存放数据的仓库 分类 对象关系型数据库,将数据(表)以文件方式存储在磁盘上,mysql,oracle,sqlserver 非关系型数据库,也叫nosql,以键值对的形式去存放数据,将数据存储在内存中,redis mysql和oracle 1.mysql是开源(免费),oracle是收费的 2.mysql没有表空间概念,但是oracle有多个表空间,可以支持分区 3.语句上有稍微的区别 4.orecle中没有专门用来表示整数和小数的数据类型 5.mysql分页是使用
分区表是数据库中一种用于优化大型表数据管理和查询性能的技术。它将一个表的数据根据特定的规则或条件分割成多个部分,每个部分称为一个分区。每个分区可以独立于其他分区进行存储、管理和查询,这样可以提高数据处理的效率,尤其是在处理大量数据时。
很多人对多列索引的理解都不够。一个常见的错误就是,为每个列创建独立的索引,或者按照错误的顺序创建多列索引。
一条查询语句在经过MySQL查询优化器的各种基于成本和规则的优化会后生成一个所谓的执行计划,这个执行计划展示了接下来具体执行查询的方式,比如多表连接的顺序是什么,对于每个表采用什么访问方法来具体执行查询等等。设计MySQL的大叔贴心的为我们提供了EXPLAIN语句来帮助我们查看某个查询语句的具体执行计划,本章的内容就是为了帮助大家看懂EXPLAIN语句的各个输出项都是干嘛使的,从而可以有针对性的提升我们查询语句的性能。
“ 在上一篇关系型数据库之MySQL的文章中,我们介绍了什么是关系型数据库以及MySQL查询优化的大体思路,那今天我们就针对具体的语句来看一下,如何优化MySQL的查询语句。”
例如: insert…select插⼊结果集 注意:字段列表1与字段列表2的字段个数必须相同,且对应字段的数据类型尽量保持⼀致。例如:
如果愿意的话,可以把合并表看成一种较老的、有更多限制的分区表,但是它们也有自己的用处,并且能提供一些分区表不能提供的功能。
关于MySQL的优化,相信很多人都听过这一条:避免使用select*来查找字段,而是要在select后面写上具体的字段。
MYSQL数据库-复合查询 零、前言 一、基本查询 二、多表查询 三、自连接 四、子查询 1、单行子查询 2、多行子查询 3、多列子查询 3、在from子句中使用子查询 五、合并查询 1、union 2、union all 零、前言 本章主要讲解学习MYSQL数据库中的复合查询,前面我们讲解的mysql表的查询都是对一张表进行查询,在实际开发中这远远不够 一、基本查询 示例: 查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J 按照部门号升序而雇员的工资降序排序
SQL 语句优化是一个既熟悉又陌生的话题。面对千奇百怪的 SQL 语句,虽然数据库本身对 SQL 语句的优化一直在持续改进、提升,但是我们不能完全依赖数据库,应该在给到数据库之前就替它做好各种准备工作,这样才能让数据库来有精力做它自己擅长的事情。
分别是id,select_type,table、type,partitions,possible_keys,key,key_len,ref,rows,Extra,下面对这些字段出现的可能进行解释:
数据库性能依赖于数据库层面的一些诸如表、查询及配置等因素。而软件功能的构成最终反映到硬件上面,即CPU使用及I/O操作。减少CPU消耗,增加I/O效率则是提高软件性能的根本驱动。着眼于数据库性能的优化,首先我们需要从较高层次软件层面规则作指导,使用wall-clock 时间测算性能。当专业知识进一步提升,了解了更多的内部机制,则可以从CPU时钟及I/O操作方面进行改进。
join 是 MySQL 用来进行联表操作的,用来匹配两个表的数据,筛选并合并出符合我们要求的结果集。
前面说了子查询里有no/any/all不能用limit,group by,order by等,他会被查询优化器优化掉,子查询可能会物化转成内连接semi-join查询,物化就是会吧子查询看做一个表,如果数据太大,超过系统变量tmp_table_size,则会在磁盘里创建b+树的临时表,如果比较小,则会创建内存里hash树的临时表,之后会物化表转连接,但如果直接转where 和on,则可能会出现子查询多条的情况,我们的真实需求并不需要多条,所以有了semi-join。
2、语法:select distinct from 表名; 去掉重复项,对应的字段前加符号表达:
说明2:as dept_name 是给dept.name 起的别名,防止查询结果中出现两个name字段,会有歧义
前面说了mysql优化器访问数据库的方法有const,ref,ref_or_null,range,index,all。然后又分为条件全部是索引回表查询,和条件有非索引查询,则需要回表之后,在过滤。又有intersection合并索引和union并集索引,当两个单独二级索引查询,不是联合索引查询,可能会触发这两个索引查询,用and是intersection,用or是union查询,触发有两个注重点:
书接上回,今天放出第一章节的第二部分,我专门新建了一个专辑方便大家回看,传送: ClickHouse实战系列课程
那就是搞定面试官系列,我会把常见的面试知识通过这个专栏写出来,比如我们常见的 Java、MySQL、Redis、MQ 以及其他的一些技术框架。
表中t1~t5的(ID,grade)值分别为(1,70)、(2,80)、(3,90)、(4,100)和(5,110), 此时两棵索引树的示例示意图如下。
就访问数据库的应用而言,逻辑上只有一个表或一个索引,但是实际上这个表可能由数10个物理分区对象组成,每个分区都是一个独立的对象,可以独自处理,可以作为表的一部分进行处理。
领取专属 10元无门槛券
手把手带您无忧上云