在访问数据库时,应该只请求需要的行和列。请求多余的行和列会消耗MySql服务器的CPU和内存资源,并增加网络开销。 例如在处理分页时,应该使用LIMIT限制MySql只返回一页的数据,而不是向应用程序返回全部数据后,再由应用程序过滤不需要的行。 当一行数据被多次使用时可以考虑将数据行缓存起来,避免每次使用都要到MySql查询。 避免使用SELECT *这种方式进行查询,应该只返回需要的列。
在尝试编写快速的查询之前,需要清楚一点,真正重要是响应时间。如果把查询看作是一个任务,那么他由一系列子任务组成,每个子任务都会消耗一定的时间。如果要优化查询,实际上要优化其子任务,要么消除其中一些子任务,要么减少子任务的执行的次数,要么让子任务运行得更快。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
华夏银行数据库专家,专注于开源及国产分布式数据库技术,多年一线金融行业数据库开发与运维经验。目前主要负责分布式数据库的研究、应用与推广工作。
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
在数据库中执行查询(select)在我们工作中是非常常见的,工作中离不开CRUD,在执行查询(select)时,多表关联也非常常见,我们用的也比较多,那么mysql内部是如何执行关联查询的呢?它又做了哪些优化呢?今天我们就来揭开mysql关联查询的神秘面纱。
SELECT GREATEST(@found := 1, id) AS id ,'uesrs' AS which_tb1
查询的生命周期的下一步是将一个SQL转换成一个可执行计划,MySQL再按照这个计划和存储引擎进行交互
完全的范式和反范式是不存在的,在实际操作中建议混用这两种策略,可能使用部分范式化的schema、缓存表、以及其他技巧。
在创建索引的时候就要考虑到关联的顺序。当表A和表B用列c关联的时候,如果优化器关联的顺序是A、B,那么就不需要在A表的对应列上创建索引。没有用到的索引会带来额外的负担,一般来说,除非有其他理由,只需要在关联顺序中的第二张表的相应列上创建索引。
在优化有问题的查询时,目标应该是找到一个更优的方法获得实际需要的结果,而不是一定总是要求从MySQL获取一模一样的结果集
MySQL优化一般是需要索引优化、查询优化、库表结构优化三驾马车齐头并进。 本章节开始讲查询优化。 一、为什么查询速度会慢 可以把查询当作一个任务,它由一系列子任务组成,每个子任务都会消耗一定的时间。如果要优化查询,实际上是优化其子任务,要么消除其中一些子任务,要么减少子任务的执行次数,要么让子任务运行得更快。 MySQL在执行查询的时候有哪些子任务,这个是有一定的方法进行剖析的,具体方法下回单独拿一个章节来分析。 通常来说,查询的生命周期大致可以按照顺序来看:从客户端,到服务端,然后在服务器上进行解
在MySQL中,我们可以通过EXPLAIN命令获取MySQL如何执行SELECT语句的信息,包括在SELECT语句执行过程中表如何连接和连接的顺序。
开启了MySQL慢查询日志之后,MySQL会自动将执行时间超过指定秒数的SQL统统记录下来,这对于搜罗线上慢SQL有很大的帮助。
对于此类考题,先说明如何定位低效SQL语句,然后根据SQL语句可能低效的原因做排查,先从索引着手,如果索引没有问题,考虑以上几个方面,数据访问的问题,长难查询句的问题还是一些特定类型优化的问题,逐一回答。
作者:李博 , 链接: https://cnblogs.com/liboware/p/12740901.html
1.对于mysql,不推荐使用子查询和join是因为本身join的效率就是硬伤,一旦数据量很大效率就很难保证,强烈推荐分别根据索引单表取数据,然后在程序里面做join,merge数据。
slow_launch_time:表示如果建立线程花费了比这个值更长的时间,slow_launch_threads 计数器将增加
1、重新定义表的关联顺序(多张表关联查询时,并不一定按照SQL中指定的顺序进行,但有一些技巧可以指定关联顺序)
前段时间笔者遇到一个复杂的慢查询,今天有空便进行了整理,以便日后回顾。举一个相似的业务场景的例子。以文章评论为例,查询20191201~20191231日期间发表的经济科技类别的文章,同时需要显示这些文章的热评数目
从开篇词我们了解到,本专栏首先会一起讨论一下 SQL 优化,而优化 SQL 的前提是能定位到慢 SQL 并对其进行分析,因此在专栏的开始,会跟大家分享如何定位慢查询和如何分析 SQl 执行效率。在前面两节,会用一些简单的例子让大家学会这些分析技巧。
嵌套查询 用一条SQL语句得结果作为另外一条SQL语句得条件,效率不好把握 SELECT * FROM A WHERE id IN (SELECT id FROM B)
在MySQL中,查询操作通常会涉及到联结不同表格,而JOIN命令则在这一过程中扮演了关键角色。在JOIN操作中,我们通常会使用三种不同的方式,分别是内连接、左连接以及右连接。
关联表查询尽量控制在五张表以内(阿里规范中是三张) 在关联查询时,尽量使inner join在前,left/right join在后。 关联查询时,要给关联表取别名。 关联查询时,关联表的字段前需要使用别名.字段名的形式。 关联查询时,on关联条件左侧是当前关联表,右侧是其他关联表。 select a.a1,b.b1,c.c1 from a as a inner join b as b on b.aid = a.id left join c as c on c.bid = b.id 联表规则 联表顺序
当我们遇到一个慢查询语句时,首先要做的是检查所编写的 SQL 语句是否合理,优化 SQL 语句从而提升查询效率。所以对 SQL 有一个整体的认识是有必要的。
1、将字符转换为数字 cast()函数 cast(colum as unsigned)
mysql查询过程: 客户端发送查询请求。 服务器检查查询缓存,如果命中缓存,则返回结果,否则,继续执行。 服务器进行sql解析,预处理,再由优化器生成执行计划。 Mysql调用存
连接(Join)是关系数据库重要特性,它和事务常被作为数据库与文件系统的两个重要区别项。程序员江湖一直流传着某某 baba 的神秘开发宝典,其中数据库部分有重要一条避免过多表的 Join,奈何 Join 特性实在是好用,广大程序员们无视着宝典的谆谆教诲,依旧每天乐此不疲的使用这 Join 特性。那数据库有哪些连接算法呢?它们的实现方式是怎样呢?它们之间又有什么区别呢?为什么需要这么多不同的连接算法呢?如果你也好奇这些问题,那么请继续往下阅读,本文将逐一回答上述问题。
上一篇Django 2.1.7 模型 - 条件查询 F对象 Q对象 聚合查询讲述了关于Django模型的F对象、Q对象、聚合查询等功能。
一般情况下,查询可以看成按如下顺序执行任务:由客户端向服务端发起查询请求,然后在服务器端进行解析,生成执行计划,执行,最后将结果返回给客户端。
MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查询日志中。long_query_time的默认值为10,意思是运行10S以上的语句。默认情况下,Mysql数据库并不启动慢查询日志,需要我们手动来设置这个参数,当然,如果不是调优需要的话,一般不建议启动该参数,因为开启慢查询日志会或多或少带来一定的性能影响。慢查询日志支持将日志记录写入文件,也支持将日志记录写入数据库表。
数据库通过锁机制来解决并发场景-共享锁(读锁)和排他锁(写锁)。读锁是不阻塞的,多个客户端可以在同一时刻读取同一个资源。写锁是排他的,并且会阻塞其他的读锁和写锁。简单提下乐观锁和悲观锁。
blog.csdn.net/weixin_39420024/article/details/80040549
前言 本文主要针对的是关系型数据数据库MySql。键值类数据库可以参考最简大数据Redis。先简单梳理下Mysql的基本概念,然后分创建时和查询时这两个阶段的优化展开。 1.0 基本概念简述 1.1
《高性能MySQL》指导 性能优化 1.表优化 2.索引优化 3.查询优化 4.服务器优化 5.系统与硬件优化 稳定优化 1.复制 2.可拓展 3.高可用,避免单点失效等 4.云 5.备份恢复 1.表优化 选择合适的数据类型 减少列和关联 反范式冗余 缓存表、计数器表 2.索引优化 索引独立放在符号的一侧 前缀/翻转后缀索引 合适的多列索引顺序 聚簇索引(索引组织表) 覆盖需要返回字段索引 索引排序 压缩 移除冗余和重复索引 (唯一和主键都是索引) 索引减少锁
上一篇文章 《MySQL索引原理机器优化》讲了索引的一些原理以及优化方案,这一次学习对查询的优化,毕竟快速的查找到数据才是我们的最终目的.
查询优化1.1 最大值和最小值的优化1.2 优化 limit 分页1.2.1 使用关联查询优化1.2.2 使用范围查询1.2.3 利用唯一自增序列进行查询防止被优化参考
问题1:char、varchar的区别是什么? varchar是变长而char的长度是固定的。如果你的内容是固定大小的,你会得到更好的性能。
Multiversion concurrency control (版本并发控制):并发访问(读或写)数据库时,对正在事务内处理的数据做多版本的管理。以达到用来避免写操作的堵塞,从而引发读操作的并发问题。
MySQL索引分为普通索引、唯一索引、主键索引、组合索引、全文索引。索引不会包含有null值的列,索引项可以为null(唯一索引、组合索引等),但是只要列中有null值就不会被包含在索引中。
以上就是mysql索引的创建场景,希望对大家有所帮助。更多mysql学习指路:MySQL
你是否真的理解这些优化技巧?是否理解它背后的工作原理?在实际场景下性能真有提升吗?我想未必。
Limit是分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般我们觉得在type, name, create_time字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。
领取专属 10元无门槛券
手把手带您无忧上云