备份恢复是 DBA 必备的技能,开源数据库 MySQL 在社区中有不少常用的备份恢复方案,xtrabackup,mypump,mydumper,mysqldump,mysql enterprise backup 等等。但是这些方法多数都是从外部利用各类数据库的机制来完成备份与回复,因此多多少少会存在操作步骤多,备份恢复比较慢等问题。于是 Oracle 在 19 年 7 月下旬发布的 MySQL 的 8.0.17 版本中,加入了一个全新的功能性插件:Clone。这个插件只需要几行 client 命令就可以完成数据库的备份恢复,且花费的时间远也低于常规的备份恢复手段。
首先我们需要把两张使用了不同引擎的表创建出来,使用为了方便起见,我们直接使用Navicat创建了两张 员工信息表,具体字段如下:
Zabbix监控Mysql | Mysql 5.7,8.0基准性能比较,Mysql8.0主主配置
一个朋友接到一个需求,从大数据平台收到一个数据写入在20亿+,需要快速地加载到MySQL中,供第二天业务展示使用。
据小道消息,MYSQL 将不在8个开头混了,要转变为 9 这个开头了,那么目前最新的8.030 这个版本的MYSQL 在两个部分的变化较大,并且这两个地方的变化预示这什么,MYSQL将往哪个地方继续变化,这是一个需要研究和理解的地方。
在 Arctype 社区里,我们回答了很多关于数据库性能的问题,尤其是 Postgres 和 MySQL 这两个之间的性能问题。在管理数据库中,性能是一项至关重要而又复杂的任务。它可能受到配置、硬件、或者是操作系统的影响。PostgreSQL 和 MySQL 是否具有稳定性和兼容性取决于我们的硬件基础架构。
在众多磁盘性能测试工具中,dd 命令因其简单易用和易于获得而深受广大运维工程师的喜爱。在这篇文章中,我们将探讨如何将它与 hdparm 命令一起使用,快速有效地评估磁盘性能。
MySQL是一个功能强大的开源数据库。随着越来越多的数据库驱动的应用程序,人们一直在推动MySQL发展到它的极限。这里是101条调节和优化 MySQL安装的技巧。一些技巧是针对特定的安装环境的,但这些
最近做的项目,有个需求(从Elastic Search取数据,业务运算后),每次要向MySQL插入1300万条数据左右。最初用MySQL的executemany()一次插入10000条数据,统计的时间如下:
在数据库的使用过程(包括其它多种应用)中,我们通常会关注一些系统指标,比如CPU的使用率,内存的占用量,或者IO的带宽消耗等等。这些系统指标可以帮助我们评估应用对系统资源的占用情况,进而找到应用进一步优化的方向。
导语 随着版本升级,关系型数据库和缓存数据库整体性能比之前都有大幅度的提升,衡量数据库性能的三个重要指标是:数据库吞吐量(QPS)、延迟时长(Latency)和稳定性,以下从这三个方面对几种数据库进行
点击上方蓝字每天学习数据库 首先来介绍一下今天的主角——Redis Pipelining。该功能是为了解决因为客户端和服务器的网络延迟造成的请求延迟。 Redis Pipelining在很早就出现了,如果你在用较早版本的Redis,那么也能使用这个功能。此功能可以将一系列请求连续发送到Server端,不必等待Server端的返回,而Server端会将请求放进一个有序的管道中,在执行完成后,会一次性将返回值再发送回来。 对于这么神奇的功能,我们怎么能不测一下pipeline对于性能的提升有多大呢? 一、
最近遇到一个MySQL数据写入异常的问题, 由于之前踩过磁盘IO速度的坑, 所以这次也优先排查磁盘写入速度是否有问题, 废话少说, 上代码:
之前的推文已经分享了数据库优化的方法,链接为https://mp.weixin.qq.com/s/6Atzk9UKPJRxxAs0nsKBXg 。其中操作系统部分介绍了IO调度算法的优化,本文将通过压力测试的方式来对比不同的调度算法下磁盘IO的表现。
InnoDB 是通用的存储引擎,在高可用和高性能之间做了折中。在MySQL8.0中,InnoDB是默认的存储引擎。除非你需要配置一个不一样的存储引擎,则在create table语句时添加ENGINE=存储引擎来指定其他的存储引擎。
在立项之初,我们进行了大量解决方案的对比,深入了解了业界的 scale-out(横向扩展)、scale-up(纵向扩展)等解决方案。但考虑到技术架构的前瞻性、发展潜力、社区活跃度以及服务本身与 MySQL 的兼容性,我们最终敲定了基于 TiDB 数据库进行二次开发的整体方案,并与 PingCAP 官方和开源社区进行深入合作的开发模式。
在MySQL中设计表的时候,MySQL官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
在美团,基于 MySQL 构建的传统关系型数据库服务已经难于支撑公司业务的爆发式增长,促使我们去探索更合理的数据存储方案和实践新的运维方式。随着近一两年来分布式数据库大放异彩,美团 DBA 团队联合架构存储团队,于 2018 年初启动了分布式数据库项目。
InfluxDB 数据模型将时间序列数据组织到存储桶和测量中。一个桶可以包含多个测量值。测量包含多个标签和字段。
我们知道,在MySQL中,redo log是一个文件组,一般是3个文件,循环写入,写满的时候会做redo log层面的checkpoint,然后覆盖之前的redo log;而binlog是有归档功能的,每个binlog写满之后,都会重新开启下一个binlog开始写入,这也是为什么可以使用binlog来进行数据恢复的一个原因,就是因为它的归档功能。
为了最大程度避免数据写入时 IO 瓶颈带来的性能问题,MySQL 采用了这样一种缓存机制:
在之前我们说过酒店记账的故事,其中酒店掌柜记账的的黑板就类似我们的redo log,而掌柜的记账本就是数据文件,掌柜的记忆就是内存。
在 上篇关于 TiFlash 的文章 发布后,我们收到了很多伙伴们的反馈,大家有各种各样的疑问,包括 TiFlash 是不是 T + 1 列存数据库?为啥实时写入也很快?读压力大怎么办?节点挂了怎么办?业务怎么接入?……今天我们就来详细回复一下大家的问题,希望能对大家理解和实践 TiFlash 有所帮助。
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?关注公种浩:程序员追风,回复012获取一套500多页PDF总结的MySQL学习笔记。
在实际的Flink 项目中,如何观察Flink的性能,如何监控Flink的运行状态,如何设置报警策略?下面简单讲下我的经验吧。
Python:dataframe写入mysql时候,如何对齐DataFrame的columns和SQL的字段名?
关于新的MySQL Shell Dump&Load实用程序的第二部分旨在演示性能,同时还将其与其他各种逻辑转储和加载工具进行比较:mysqldump,mysqlpump&mydumper。
日常学习和工作中,经常会遇到导数据的需求。比如数据迁移、数据恢复、新建从库等,这些操作可能都会涉及大量数据的导入。有时候导入进度慢,电脑风扇狂转真的很让人崩溃,其实有些小技巧是可以让导入更快速的,本篇文章笔者会谈一谈如何快速的导入数据。
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
innodb事务日志包括redo log和undo log。redo log是重做日志,提供前滚操作,undo log是回滚日志,提供回滚操作。
近几年,基于MySQL构建的传统关系型数据库服务,已经很难支撑美团业务的爆发式增长,这就促使我们去探索更合理的数据存储方案和实践新的运维方式。而随着分布式数据库大放异彩,美团DBA团队联合基础架构存储团队,于 2018 年初启动了分布式数据库项目。
这个系列属于个人学习网易云课堂MySQL数据库工程师微专业的相关课程过程中的笔记,本篇为其“MySQL业务优化与设计”中的MySQL数据类型相关笔记。
过去几年,数据仓库和数据湖方案在快速演进和弥补自身缺陷的同时,二者之间的边界也逐渐淡化。云原生的新一代数据架构不再遵循数据湖或数据仓库的单一经典架构,而是在一定程度上结合二者的优势重新构建。在云厂商和开源技术方案的共同推动之下,2021 年我们将会看到更多“湖仓一体”的实际落地案例。InfoQ 希望通过选题的方式对数据湖和数仓融合架构在不同企业的落地情况、实践过程、改进优化方案等内容进行呈现。本文将分享同程艺龙将 Flink 与 Iceberg 深度集成的落地经验和思考。
前言:在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇博客我们就来分析这个问题,探讨一下内部的原因。
通过上面的测试可以看出网络延迟较大时,对数据的写入及每秒执行的事务数都有较大影响;如果需要做性能测试及数据同步,尽量将压测工具或同步工具部署在同一个机房,避免网络延迟较大,对测试结果有影响。
上篇文章写了MySQL写入压测的几种单线程的方式,本来想抛砖引玉,只是提供一些个人的经验和思路。后来有粉丝后台留言,想看看并发怎么处理,所以有了今天这篇文章。
InnoDB 事务日志包括redo log和undo log,其中redo log是重做日志,提供前滚操作;undo log是回滚日志,提供回滚操作。undo log不是redo log的逆向过程,其实它们都算是用来恢复的日志:
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇文章我们就来分析这个问题,探讨一下内部的原因。
缓存是为了减少数据库和服务器压力而产生的,在应用层编程时需主要考虑以下几种情况: 客户端缓存 服务端缓存 网络缓存(CDN缓存) 客户端缓存负责减轻服务端的存储和频繁的数据请求等压力。 例如,在QQ初始阶段,只有“会员”才可以把QQ表情存储在“云端”之上,因为腾讯内部并没有庞大的存储系统存储大量的QQ表情。 虽然现在腾讯已经取消了只有“会员”才可以存储QQ表情的限制,但是大部分QQ表情仍然默认存储在本地客户端。 客户端缓存大致可分为以下几种: 客户端本地文件缓存,包括图片、.txt文件、.doc文件等。 客
领取专属 10元无门槛券
手把手带您无忧上云