数据库使用的mysql,起初是单库单表,时间久了单表的数据量越来越大,一个表中的数据量达到3个多亿,mysql单表数据量达到800万左右就达到瓶颈了,不得不分表了,使用mycat中间件
一般情况下使用 TiDB 单表大小为千万级别以上在业务中性能最优,但是在实际业务中总是会存在小表。例如配置表对写请求很少,而对读请求的性能的要求更高。TiDB 作为一个分布式数据库,大表的负载很容易利用分布式的特性分散到多台机器上,但当表的数据量不大,访问又特别频繁的情况下,数据通常会集中在 TiKV 的一个 Region 上,形成读热点,更容易造成性能瓶颈。
当我们业务数据库表中的数据越来越多,如果你也和我遇到了以下类似场景,那让我们一起来解决这个问题
在系统初期,整体的并发了相对较小,因此一般都是将所有的数据信息存储在单库中进行读/写操作。但是随着用户规模不断提升,单库逐渐力不从心,TPS/QPS越来越低。因此到了这个时候,dba会将数据库设置为读写分离状态(生产环境一般会采用一主一从或者一主多从),Master负责写操作,Slave作为备库,不开放写操作,但是允许读操作,主从之间保持数据同步即可。 读写分离之后,可以大大提升单库无法支撑的负载压力 需要注意的是:如果Master存在TPS存在较高的情况,Master之前最好将同一份数据落到缓存中,以避免高并发情况下,从Slave中获取不到指定数据的情况发生 [MySQL 主从同步延迟的原因及解决办法(https://blog.csdn.net/soar_away/article/details/72615012)
2、使用bigint(无符号)类型时,每秒插入大量数据,单表数据量依然能够持续存放相当长的时间。
今天,探讨一个有趣的话题:MySQL 单表数据达到多少时才需要考虑分库分表?有人说 2000 万行,也有人说 500 万行。那么,你觉得这个数值多少才合适呢?
为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?
说白了,分库分表是两回事儿,大家可别搞混了,可能是光分库不分表,也可能是光分表不分库,都有可能。
vivo 云服务提供给用户备份手机上的联系人、短信、便签、书签等数据的能力,底层存储采用 MySQL 数据库进行数据存储。
作为一个合格的 DBA,在遇到线上单表数据量超过千万级别的时候,往往会建议用户通过分表来缩减单表数据量,当用户问为什么单表数据量不能超过千万时,DBA 往往会说:单表数据量超过千万,会影响查询性能。知其然而不知所以然,学习技术不能停留在表面,而是要进一步去深入挖掘其中的原理,这样才能不断进步和成长。回到这个问题:为什么单表数据量不能超过两千万,其中的依据是什么?欢迎阅读。
今天是《分库分表 ShardingSphere 原理与实战》系列的开篇文章,之前写过几篇关于分库分表的文章反响都还不错,到现在公众号:程序员小富后台不断的有人留言、咨询分库分表的问题,我也没想到大家对于分库分表的话题会这么感兴趣,可能很多人的工作内容业务量较小很难接触到这方面的技能。这个系列在我脑子里筹划了挺久的,奈何手说啥也不干活,就一直拖到了现在。
分析一下问题出现在哪儿呢? 关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到 1000W 或 100G 以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。
面试官: 小伙子,看到你的简历上面写了项目中有对MySQL进行分库分表,为什么要进行分库分表?
在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量。当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术。
好久没上OSC,上面安排测下Mycat,于是申请服务器,花了两个周做出这个东西,供以借鉴。
数据库在业务体系不大的情况,一般都是单库出现,通过增加主从复制提高SLA。但当业务体量不断扩大,就需要考虑进行数据拆分来解决性能瓶颈问题。
当 MySQL 单表记录数过大时,数据库的 CRUD 性能会明显下降,一些常见的优化措施如下:
无论是做PHP开发还是做JAVA开发甚至前端开发,只要是开发,面试的时候都必考数据库。为什么前端也要考数据库?因为数据库课程是计算机的基础课程,同样的基础课程还有操作系统,数据结构。只要写代码就永远跳不出这三门基础课。
MySQL数据库默认连接为100,我们可以通过配置initialSize、minIdle、maxActive等进行调优,但由于硬件资源的限制,数据库连接不可能无限制的增加,对大型单体应用单实例数据库可能会出现最大连接数不能满足实际需求的情况,这时就会系统业务阻塞。
爱奇艺,中国高品质视频娱乐服务提供者,2010 年 4 月 22 日正式上线,推崇品质、青春、时尚的品牌内涵如今已深入人心,网罗了全球广大的年轻用户群体,积极推动产品、技术、内容、营销等全方位创新。企业愿景为做一家以科技创新为驱动的伟大娱乐公司。我们在前沿技术领域也保持一定的关注度。
在互联网时代,随着业务数量的暴增和应用规模的不断扩大,无论是oracle还是mysql这样子的关系型数据库,都会面临服务器CPU、磁盘IO和内存的各种瓶颈问题。基于此情况,各个业务团队迫切需要一种数据分片的方案将业务数据量存储成本分摊到成本可控的各个普通数据库服务器上,数据库切分的方案便应运而生。
在很多小型应用中都没真正使用分库分表,但是说起来并不陌生,因为我们在面试中经常会被问到,今天我们从从以下几个方面来聊聊分库分表:「是什么?解决什么?怎么做?为什么要这么做?即:」
关于架构,大家都有了解和理解。通常一个业务或项目,在做架构设计时,可能会包含业务架构和技术架构。其中技术架构是我们作为开发角色,在做设计时重点的工作内容。但还有架构类型的划分方式,会包括业务架构、技术架构、数据架构和应用架构四种。
面试官:如何来设计动态扩容的分库分表方案? 面试官心理剖析: 这个问题主要是看看你们公司设计的分库分表设计方案怎么样的?你知不知道动态扩容的方案?
由于现在 ORM 框架的成熟运用,很多小伙伴对于 JDBC 的概念有些薄弱,ORM 框架底层其实是通过 JDBC 操作的 DB
微服务、分布式大行其道的当下,中、高级Java工程师面试题中高并发、大数据量、分库分表等已经成了面试的高频词汇,这些知识不了解面试通过率不会太高。
本文以安能物流作为案例,探讨了在数字化转型中,企业如何利用 TiDB 分布式数据库来应对复杂的业务需求和挑战。
项目前期基本都是单库单表,单库单表也是最常见的数据库设计,比如说:有一张用户表User,被放到数据库中,所有的用户的信息都被存储在该数据库的这张User表里。
传统的将数据集中存储至单一数据节点的解决方案,在容量、性能、可用性和运维成本这三方面难于满足海量数据场景。在单库单表数据量超过一定容量水位的情况下,索引树层级增加,磁盘 IO 也很可能出现压力,会导致很多问题。
成熟的业务系统都会配套一个重要的旁路系统--操作日志,它用于监控和记录核心业务系统的操作,以确保系统的稳定性和安全性。
分类:分为水平分区(Horizontal Paritioning)和垂直分区(Vertical Partitioning)
文章摘要:当单表数据达到千万以上时,通过加索引或者表分区优化提升的效果就比较有限了,应该如何应对呢???
微服务、分布式大行其道的当下,中、高级Java工程师面试题中高并发、大数据量、分库分表等已经成
首先我们要知道分库、分表都是干啥的,本文主角还是我们的MySQL为第一视角。首先从字面意思来看:
就是把一张表的数据分成N个区块,在逻辑上看最终只是一张表,但底层是由N个物理区块组成的
随着唯品会业务的快速发展,订单量的不断增长,原有的订单存储架构已经不能满足公司的发展了,特别是在大促高峰期,原订单库已经成为抢购瓶颈,已经严重制约公司的发展。
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
分表和分区看起来十分类似,确实,分区已经能够在磁盘层面将一张表拆分成多个文件了,理论上前面提到的大表的问题都能得到有效解决。因为分区就是分表的数据库实现版本。
无论是大企业还是小公司,都有意无意的使用 mysql 来搭建数据存储服务,但是随着业务访问量、数据量的急剧膨胀,集中式数据存储越来越凸显出他的技术瓶颈,需要做读写分离。 而这恰恰也是 mysql 的一个优势所在,正是 mysql 的可扩展性,让 mysql 逐渐成为了企业的优先选择。
如果面试问你,执行SQL响应慢,你有哪些排查思路和解决方案?这是一位去某里面试的小伙伴跟我分享的面试真题,那今天我给大家来分享一下我的思路。
我们说 Mysql 单表适合存储的最大数据量,自然不是说能够存储的最大数据量,如果是说能够存储的最大量,那么,如果你使用自增 ID,最大就可以存储 2^32 或 2^64 条记录了,这是按自增 ID 的数据类型 int 或 bigint 来计算的;如果你不使用自增 id,且没有 id 最大值的限制,如使用足够长度的随机字符串,那么能够限制单表最大数据量的就只剩磁盘空间了。显然我们不是在讨论这个问题。
领取专属 10元无门槛券
手把手带您无忧上云