刚入职的时候,同事就提醒过我,涉及三四张表的时候,数据量大,尽量不用连表查询,用单表。我最近还真的是遇到了。因为联表查询导致引发的慢sql。
一直想要聊一聊关于开发中更建议使用单表查询+代码层组装 or 联表查询 的问题,在开发中每个同学的开发中有各自的习惯,笔者在公司也和一些同事关于这方面有一些探讨。
1.对于mysql,不推荐使用子查询和join是因为本身join的效率就是硬伤,一旦数据量很大效率就很难保证,强烈推荐分别根据索引单表取数据,然后在程序里面做join,merge数据。
作者:李博 , 链接: https://cnblogs.com/liboware/p/12740901.html
概览 MySQL数据操作: DML 在MySQL管理软件中,可以通过SQL语句中的DML语言来实现数据的操作,包括 使用INSERT实现数据的插入 UPDATE实现数据的更新 使用DELETE实现数据的删除 使用SELECT查询数据以及。 插入数据insert 1. 插入完整数据(顺序插入) 语法一: INSERT INTO 表名(字段1,字段2,字段3…字段n) VALUES(值1,值2,值3…值n); 语法二: INSERT INTO 表名 VALUES (值1,值2,
一、增 1. 插入完整数据(顺序插入) 语法一: INSERT INTO 表名(字段1,字段2,字段3…字段n) VALUES(值1,值2,值3…值n); 语法二: INSERT INTO 表名 VALUES (值1,值2,值3…值n); 2. 指定字段插入数据 语法: INSERT INTO 表名(字段1,字段2,字段3…) VALUES (值1,值2,值3…); 3. 插入多条记录 语法: INSERT INTO 表名 VALUES
语句:select * from a_table a inner join b_table bon a.a_id = b.b_id;
Explain 用来分析 SELECT 查询语句,开发人员可以通过分析 Explain 结果来优化查询语句。
(0)可以先使用 EXPLAIN 关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮我们分析是查询语句或是表结构的性能瓶颈。
在系统性能问题中,数据库往往是性能的瓶颈关键因素。那么如何去检测mysql的性能问题,如何构建高性能的mysql,如何编写出高性能的sql语句?为此,整理一些建议。
用两个表(a_table、b_table),关联字段a_table.a_id和b_table.b_id来演示一下MySQL的内连接、外连接( 左(外)连接、右(外)连接、全(外)连接)。
在优化有问题的查询时,目标应该是找到一个更优的方法获得实际需要的结果,而不是一定总是要求从MySQL获取一模一样的结果集
在访问数据库时,应该只请求需要的行和列。请求多余的行和列会消耗MySql服务器的CPU和内存资源,并增加网络开销。 例如在处理分页时,应该使用LIMIT限制MySql只返回一页的数据,而不是向应用程序返回全部数据后,再由应用程序过滤不需要的行。 当一行数据被多次使用时可以考虑将数据行缓存起来,避免每次使用都要到MySql查询。 避免使用SELECT *这种方式进行查询,应该只返回需要的列。
在面对不够优化、或者性能极差的SQL语句时,我们通常的想法是将重构这个SQL语句,让其查询的结果集和原来保持一样,并且希望SQL性能得以提升。而在重构SQL时,一般都有一定方法技巧可供参考,本文将介绍如何通过这些技巧方法来重构SQL。
前两天在刷朋友圈,看到一个视频号链接,说有个云数仓,比ClickHouse 还快3倍。我就点进去看了,原来是 SelectDB 公司的“为数而生,因云而新” SelectDB 产品发布会。这个发布会上 SelectDB 发布了云数仓产品 SelectDB Cloud。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
在 MySQL 中,COUNT 函数是一个非常常用的聚合函数,它用于计算某列或某表达式在查询结果中出现的次数。但是,在实际使用过程中,我们可能会遇到不同的 COUNT 函数写法,比如 COUNT(*)、COUNT(主键id)、COUNT(字段) 和 COUNT(1),这些写法在效率上有何差别呢?本文将详细探讨这个问题。
图片与最后一部分来自:https://blog.csdn.net/plg17/article/details/78758593
文章目录 1. Explain 1.1. id 1.1.1. id相同 1.1.2. id不同 1.2. table 2. 索引优化 2.1. 全值匹配 2.2. 最佳左前缀法则 2.3. 不在索引上列上做任何操作 2.4. 不能使用索引中范围条件右边的列(范围之后的索引全失效) 2.5. 使用覆盖索引,少使用select* 2.6. mysql在使用不等于(!=或者<>)的时候无法使用导致全表扫描 2.7. 在使用or的时候,前后两个都是索引的时候才会生效 2.8. is null和is not nu
导读 软件测试人员在工作使用SQL语言中的查询是使用得最多的,而查询也是SQL语言中最复杂的,很多测试人员只使用到其中最简单的查询 1.数据库的使用 现在在任何项目中都有数据的存在,那么在测试过程中查看数据库中的数据是必不可少的步骤,那什么情况下测试人员会查看数据库呢? 比如有一个测试场景是注册新用户,用户在前端页面上添加了一个新用户,点击提交后,弹出提示用户注册成功。 这时预期结果中就应该包含查询数据库: 查询user表中新增一条数据,数据字段的信息与注册信息一致; 查询password表中新增一条数据
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
最近在刷LeetCode中数据库题目时,有一道排名题目,用了6种写法分别代表6种SQL思维来实现,想想也算是有趣。
MySQL凭借着它还不错的性能、还不错的稳定性常年稳居老二宝座,当然最大的优势就是它不要钱,还开源,这让它成为大部分中小型公司,尤其是互联网公司首选的数据库(近年来越来越多的大公司也在尝试将业务转移到这种不要钱的数据库上来)。
在互联网项目中,当业务规模越来越大,数据也越来越多,随之而来的就是数据库压力会越来越大。
上篇文章说了,mysql5.6.6版本之前数据默认在系统表空间,之后默认在独立表空间,innodb因为索引和数据在一个b+树,所以两个文件,一个文件结构,一个存数据,myISAM则是三个文件。一个聚簇索引有两个段,叶子段和非叶子段,一个段有他专属的区,数据刚开始存在碎片区,不属于任何段,直属表空间。
在数据库中执行查询(select)在我们工作中是非常常见的,工作中离不开CRUD,在执行查询(select)时,多表关联也非常常见,我们用的也比较多,那么mysql内部是如何执行关联查询的呢?它又做了哪些优化呢?今天我们就来揭开mysql关联查询的神秘面纱。
对于 MySQL 的 JOIN,不知道大家有没有去想过他的执行流程,亦或有没有怀疑过自己的理解(自信满满的自我认为!);如果大家不知道怎么检验,可以试着回答如下的问题
MongoDB是一个跨平台的,面向文档的数据库,是当前 NoSQL 数据库产品中最热 门的一种。它介于关系数据库和非关系数据库之间,是非关系数据库当中功能最丰富,最 像关系数据库的产品。它支持的数据结构非常松散,是类似 JSON的BSON 格式,因此可以存储比较复杂的数据类型。
爱可生 DBA 团队成员,擅长故障分析、性能优化,个人博客:https://www.jianshu.com/u/a95ec11f67a8,欢迎讨论。
MongoDB 是一个跨平台的,面向文档的数据库,是当前 NoSQL 数据库产品中最热门的一种。它介于关系数据库和非关系数据库之间,是非关系数据库当中功能最丰富,最像关系数据库的产品。它支持的数据结构非常松散,是类似JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。
我们可能会采取各种方式去优化,比如之前文章提到的缓存方案,SQL优化等等,除了这些方式以外,这里再分享几个针对数据库优化的常规手段:「数据读写分离」与「数据库Sharding」。这两点基本上是大中型互联网项目中应用的非常普遍的方案了。
很明显,不同的类型存储的长度有很大区别的,对查询的效率有影响,字段长度对索引的影响是很大的。
相信这内连接,左连接什么的大家都比较熟悉了,当然还有左外连接什么的,基本用不上我就不贴出来了。这图只是让大家回忆一下,各种连接查询。 然后要告诉大家的是,需要根据查询的情况,想好使用哪种连接方式效率更高。
数据库的管理是一个非常专业的事情,对数据库的调优、监控一般是由数据库工程师完成,但是开发人员也经常与数据库打交道,即使是简单的增删改查也是有很多窍门,这里,一起来聊聊数据库中很容易忽略的问题。 字段长度省着点用 先说说我们常用的类型的存储长度: 列类型存储长度tinyint1字节smallint2字节int4字节bigint8字节float4字节decimal(m,d)0-4字节datetime8字节timestamp4字节char(m)m个字节varchar(m)可变长度text可变长度 很明显,不同的类
接上期,这边2个 1000万的表people people_1, 与一个range 的分区表people_range 1000万左右的数据表,分别进行JOIN 的运算
MySQL优化一般是需要索引优化、查询优化、库表结构优化三驾马车齐头并进。 本章节开始讲查询优化。 一、为什么查询速度会慢 可以把查询当作一个任务,它由一系列子任务组成,每个子任务都会消耗一定的时间。如果要优化查询,实际上是优化其子任务,要么消除其中一些子任务,要么减少子任务的执行次数,要么让子任务运行得更快。 MySQL在执行查询的时候有哪些子任务,这个是有一定的方法进行剖析的,具体方法下回单独拿一个章节来分析。 通常来说,查询的生命周期大致可以按照顺序来看:从客户端,到服务端,然后在服务器上进行解
MySQL数据库是许多Web应用程序的底层支持,而查询性能的优化是确保系统高效运行的关键。在MySQL中,EXPLAIN是一项强大的工具,可帮助开发者深入了解查询语句的执行计划,从而更好地优化查询性能。本文将详细解析MySQL的EXPLAIN关键字,以揭开查询执行计划的面纱。
CSDN & 阿里云 & 知乎 等平台优质作者,擅长Oracle & MySQL等主流数据库系统的维护和管理等
然后就开始试,把mybatis写的SQL放到Navicat直接到数据库查,发现查询非常慢,居然要几十秒,多的时候100多s。
MyBatis-Plus(简称 MP)是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。
数据查询是数据库的核心操作。因此,数据查询语言DQL(Data Query Language)是SQL中的核心部分,它允许用户查询数据,这也是通常最频繁的数据库日常操作。
前面说了semi-join,这个是在where或者on语句后面,in里面,并且外层的条件必须用and与子查询连接,semi-join的作用就是,不管子查询有多少条数据返回,都不管,外层都只查询出来外层表数据,如果不符合条件,可以用物化表或者in变exists方法优化。还有派生表查询,可以内外合并,不行的话就物化查询。
上一篇讲了比较简单的单表查询以及MySQL的组函数,这一篇给大家分享一点比较难得知识了,关于多表查询,子查询,左连接,外连接等等。希望大家能都得到帮助! 在开始之前因为要多表查询,所以搭建好环境:
上篇文章说了,mysql优化器会从cpu和io成本来考虑查询的消耗,possible key来计算全表和索引的成本,选择成本最小的,子查询有物化和semi-join半连接的方式优化,物化会优先哈希索引memory存储引擎,如果数据量太大会选择b+树。
mysql查询过程: 客户端发送查询请求。 服务器检查查询缓存,如果命中缓存,则返回结果,否则,继续执行。 服务器进行sql解析,预处理,再由优化器生成执行计划。 Mysql调用存
B Tree 指的是 Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层。
领取专属 10元无门槛券
手把手带您无忧上云