在 MySQL 中,最常见的去重方法有两个:使用 distinct 或使用 group by,那它们有什么区别呢?接下来我们一起来看。
启用慢查询日志 mysql 中的 slow log 是用来记录执行时间较长(超过 long_query_time 秒)的 sql 的一种日志工具。 启用 slow log 在 my.cnf 中设置 [mysqld] slow_query_log=on slow_query_log_file=mysql-slow 重启 MySQL 服务。 1.工具集 五款常用工具 mysqldumpslow mysqlsla myprofi mysql-explain-slow-log
1. MySQL的语法: 2. MySQL语法的定义顺序: (1) 指定查询的字段(2) 指定是否去重(3) 指定表名(4) 指定联表方式(5) 指定联表条件(6) 指定判断条件(7) 指定分组字段(8) 指定分组后的过滤条件(9) 指定排序方式(10) 指定分页显示方式 3. MySQL语法的执行数序: (1) 先找到查询的左表(2) 指定左表和右表联表的条件(3) 找到联表的右表生成笛卡尔积临时表(4) 根据判断条件找出符合条件的数据(5) 把结果按照指定的字段进行分组(6) 通过分组再次过滤出符合
通过TPC-H基准测试,可获得数据库单位时间内的性能处理能力,为评估数据库系统的现有性能服务水平提供有效依据。
有两种启用方式:1, 在my.cnf 里 通过 log-slow-queries[=file_name]
在MySQL数据库中,经常会遇到需要对数据进行分组和去重的情况。为了达到这个目的,我们通常会使用GROUP BY和DISTINCT这两个关键字。虽然它们都可以用于去重,但是它们具有不同的用法和效果。本文将详细解析MySQL中的GROUP BY和DISTINCT的用法,并比较它们对同一字段的去重效果是否相同。
1. 之前我们所学的都是DDL语句,接下来所学的才是真正的DML语句。 插入数据的sql语句就是insert into table_name (column1, column2, ……) values (data1, data2, ……),values左边的括号不加时,默认代表对表的所有列进行插入,不忽略任何一列,加上括号时,可以自己指定某些列进行插入,但值得注意的是如果某些列没有default约束,你还将其忽略进行数据插入的话,则插入数据的操作一定会失败。values右边的括号个数表示向表中插入几行的数据,括号中用逗号分隔开来的数据分别一 一对应表中的列字段。
查询数据的本质:mysql会到你本地的硬盘上找到对应的文件,然后打开文件,按照你的查询条件来找出你需要的数据。下面是完整的一个单表查询的语法 select * from,这个select * 指的是要查询所有字段的数据。 SELECT distinct 字段1,字段2... FROM 库名.表名 #from后面是说从库的某个表中去找数据,mysql会去找到这个库对应的文件夹下去找到你表名对应的那个数据文件,找不到就直接报错了,找到了就继续后面的操作 WHERE 条件 #从表中找符合条件的数据记录,where后面跟的是你的查询条件 GROUP BY field(字段) #分组 HAVING 筛选 #过滤,过滤之后执行select后面的字段筛选,就是说我要确定一下需要哪个字段的数据,你查询的字段数据进行去重,然后在进行下面的操作 ORDER BY field(字段) #将结果按照后面的字段进行排序 LIMIT 限制条数 #将最后的结果加一个限制条数,就是说我要过滤或者说限制查询出来的数据记录的条数关于上面这些内容,我们在下面一个一个的来详细解释
前一阵在写很多sql及类sql语句,发现自己的记忆力可以说是相当烂了,上午刚查过插入语句怎么写,下午就忘记了需要重新查,,而且隐隐约约的有点强迫症??只要记得不是特别清晰,就需要去重新查,看,记一遍,十分浪费时间,因此在这里将自己用到的sql语句记下来,方便后续的查找!!
Doris由百度大数据部研发,之前叫百度Palo,于2017年开源,2018年贡献到 Apache 社区后,更名为Doris。
索引是存储引擎用于快速找到记录的一种数据结构。索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高几个数量级,"最优"的索引有时比一个"好的"索引性能要好两个数量级。
在业务开发中常遇到关联查询使用count()函数做统计的需求,同样在使用该函数时如果处理不当会导致统计出的数据是真实数据N倍的问题,出现重复问题导致统计不准确。出现该问题的原因是关联查询的主表与关联表关联关系不是一对一而是一对多的关系。
日志就跟人们写的日记一样,记录着过往的事情。但是人的日记是主观的(记自己想记的内容),而数据库的日志是客观的,根据记录内容分为以下好几种日志:
为满足用户标签的统计需求,小灰利用Mysql设计了如下的表结构,每一个维度的标签都对应着Mysql表的一列:
Mysql慢查询和慢查询日志分析 众所周知,大访问量的情况下,可添加节点或改变架构可有效的缓解数据库压力,不过一切的原点,都是从单台mysql开始的。下面总结一些使用过或者研究过的经验,从配置以及调节索引的方面入手,对mysql进行一些优化。 第一步应该做的就是排查问题,找出瓶颈,所以,先从日志入手 开启慢查询日志 mysql>show variables like “%slow%”; 查看慢查询配置,没有则在my.cnf中添加,如下 log-slow-queries = /data/mysqldata/
提到复杂查询,MYSQL 头疼的旅程就开始了,当然优化的方法和其他的数据监控也不大同,MYSQL的语句优化属于发散性思维,只要你能用上的方法都可以,可不限制于数据库本身的语句优化。所以MYSQL的优化好像是一个讲不完的故事。
group查询就是分组查询,为什么要分组查询?因为我们想按某个维度进行统计。下面来看个图:
之前的SQL基础1中已经介绍了部分Select的内容,但是,实际使用中select 还有很多其他的用法,本文会再介绍部分select的其他用法。
本周学习的数据库,有一种明显的感觉,语法简单,基本上不会有大段大段的代码出现,简简单单的几行代码就可以完成我们需要实现的任务,或许是因为我们的任务比较初级吧!嘻嘻!
例如,使用 MySQL 数据库判重,或使用 List.contains() 或 Set.contains() 判重就不可行,因为 MySQL 在数据量大时查询就会非常慢,而数据库又是及其珍贵的全局数据库资源。
因为业务层操作内存,MySQL操作磁盘,数据库永远是最先达到性能瓶颈,我们不能把过多的逻辑操作放在数据库上,逻辑操作应该在业务层做。
ClickHouse应用于OLAP(在线分析处理)领域,具体来说满足如下特点使用此技术比较合适:
上篇文章说了,mysql的访问效率有几大类别,const,ref,Ref_null,rang,index,all,以及连接查询走索引,驱动表和被驱动表的查询效率。
只要source端产生了changelog数据,后面的算子是可以自动处理update消息的,简单理解,你可以认为:
mysql方案, 随着nosql的流行,大数据的持续热点,但是mysql仍然不可替代,对于大多数的中小项目,低于千万级的数据量,采用mysql分表+cache,是完全可以胜任的,而且稳定性是其他方案无可比拟的:
最近在公司做了几张报表,还记得刚开始要做报表的时候都快把SQL给忘光了(当时在广州休假了1个月多,在实习期间也没咋写过SQL),回到公司的第一个需求就是做报表。
itest开源敏捷测试管理,testOps践行者,极简的任务管理,测试管理,缺陷管理,测试环境管理,接口测试5合1,又有丰富的统计分析。可按测试包分配测试用例执行,也可建测试迭代(含任务,测试包,BUG,接口)来组织测试工作,也有测试环境管理,还有很常用的测试度量;对于发版频繁,需求常变,itest还可导出用例,线下修改、执行,新增后再导入(同步)到线上;且可根据测试策略来设置测试流程,并可实时调整;在测试看板中,能查看迭代报告,测试包执行情况,测试任务进展,也可以在看板上直接执行用包用例。待接口测试几轮迭代,比较完善后,就着手和CD/CI打通的集成实现!
最近在公司做了几张报表,还记得刚开始要做报表的时候都快把SQL给忘光了,回到公司的第一个需求就是做报表。
执行计划是SQL语句经过查询分析器后得到的 抽象语法树 和 相关表的统计信息 作出的一个查询方案,这个方案是由查询优化器自动分析产生的。由于是动态数据采样统计分析出来的结果,所以可能会存在分析错误的情况,也就是存在执行计划并不是最优的情况。
values左侧为表中属性,右侧为自定义插入的内容,左右两侧安装顺序是一一对应的,如果顺序不同就会导致类型不同而出错。
《小白学习MySQL - 增量统计SQL的需求》中,我们提到了一个MySQL增量统计需求的SQL,其实不止文中用的方案,还会有其他的,很多朋友都提到可以使用MySQL 8.0支持的开窗函数来解决。
id如果相同,可以认为是一组,从上往下顺序执行;在所有组中,id值越大,优先级越高,越先执行
今天上班的时候,要对一个数据库中的所有慢日志记录进行做一个统计,统计出数据库中所有慢日志用时最长的10条,这个需求乍一听比较简单,数据库中的满日志大概有5万多条吧,走个全表扫描也就不到半秒的时间。我第一反应是:
MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。
MySQL 是最流行的关系型数据库管理系统,在 WEB 应用方面 MySQL 是最好的 RDBMS(Relational Database Management System:关系数据库管理系统)应用软件之一。
IDC发布报告《中国金融行业分布式事务型数据库市场份额,2023:技术验证结束,迎接高速增长》:在金融整体市场和银行细分市场,腾讯云数据库TDSQL斩获“双料”第一!
1、利用instr连接表做字段查询,group_concat做值的合并: create table ab(product_id int,product_name varchar(10), product_type_id varchar(10)); insert into ab values(1,'产品A','1,2'),(2,'产品B','2,3'); create table ac(product_type_id int,product_type_name varchar(10)); insert
这已经是这个系列的第五期了,从PS到SYS,基本上这两个可以获取整体的MYSQL8的性能信息(目前学到的需要整体在8.022版本才有之前介绍的所有的功能,8.018可以有90%的功能)。所以选择MYSQL 从高可用的角度以及监控的角度来看,版本至少应该在8.022以上。
与其它主流商业数据库一样,TiDB 的查询优化器负责用户及系统查询的优化,生成有效且高效的执行计划由执行器来执行。而优化器生成的执行计划的优劣直接影响查询的执行效率和性能。「TiDB 查询优化及调优」系列文章将通过一些具体的案例,向大家介绍 TiDB 查询及优化相关的原理和应用。本文为系列文章的第一篇,将简要介绍 TiDB 的查询优化器的优化流程。
不管是任何数据库.都会有查询功能.而且是很重要的功能.上一讲知识简单的讲解了表的查询所有.
对于数据库来说安装,部署几乎是一次性的。后期的管理和优化是持续性的工作。 对于MySQL来说,可以说90%问题都在SQL语句上面。从问题SQL的筛选和优化,在MySQL环境下常用哪些方式。(以下版本是MySQL8.0.23) MySQL优化前置知识基础
在 MySQL 的实际使用中,常常会遇到一条 SQL 执行非常慢的情况,此前我们总结了一系列博客来排查相关的问题:
MySQL中的基本查询,即CRUD : Create(创建), Retrieve(读取),Update(更新),Delete(删除)
2、 数据库命名规范,统一:hs_xxxx;表名不超过40个字符(即最大只能40个字符)
领取专属 10元无门槛券
手把手带您无忧上云