在我们平时工作或学习的过程中,有时需要在数据库中生成大量的测试数据,这个时候,我们可以利用mysql内存表插入速度快的特点,先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中。经过我的测试,这种方案插入数据是非常快的。
很多时候,因为数据统计,我们需要将数据库的数据导出到Excel等文件中,以供数据人员进行查看,如果数据集不大,其实很容易;但是如果对于大数集的导出,将要考虑各种性能的问题,这里以导出数据库一百万条数据为例,导出时间不过20秒,值得学习的一种大数据导出方式。
如果你打算好好学习一下 MySQL,性能优化肯定是绕不过去一个问题。当你撸起袖子准备开始的时候,突然发现一个问题摆在眼前,本地数据库中没那么大的数据量啊,几条数据优化个毛线啊。生产库里数据多,但谁敢直接在生产环境动手啊,想被提前优化吗?
在工作中遇到count(*)、count(1)、count(col) ,可能会让你分不清楚,都是计数,干嘛这么搞这么多东西。
本文实例讲述了php使用fputcsv实现大数据的导出操作。分享给大家供大家参考,具体如下:
当数据量比较大的时候比如select * from u_user limit 10000000,10
上一篇谈到了我们日常开发中经常需要用到的分页,在业务数据量不多的情况下,我们直接用limit指定偏移量就可以满足我们业务需求了,但是数据量大的时候使用limit指定偏移量性能会很低,因为需要全表检索。所以上一篇主要提到了几种可以优化分页的方案,而且分页业务一般都伴随着需要count函数查询总条数,所以本篇文章主要讲讲count函数的一般优化方案。
对于传统的关系数据库如oracle,在大量数据导入方面的效率,我们一般有一个大概的认知,即1分钟以内可以导入千万条数据,而对于MySQL数据库,普遍观点以为性能相对较差,尤其时对于千万级别的数据量,几十分钟、几个小时,都是可能的。是否如此,本文会给出答案。
码农架构的读者应该注意到上个周末有分享一篇文章:一个几乎每个系统必踩的坑儿:访问数据库超时,最后对于怎么避免写出慢SQL没有过多赘述,但实际上这个问题我们经常遇到。我们不能等着系统上线,慢 SQL 吃光数据库资源之后,再找出慢 SQL 来改进,那样就晚了。那么,怎样才能在开发阶段尽量避免写出慢 SQL 呢?
Server version: 5.5.56-MariaDB MariaDB Server
在删除sql语句中,写法如下:DELETE FROM ueb_logistics_rule_logs WHERE type=0 LIMIT 100; 凡是这样,delete带有where条件的,都不是真删除,只是MySQL给记录加了个删除标识,自然这样操作后表数据占有空间也不会变小了
随着系统的运行,数据量变得越来越大,单纯的将数据存储在MySQL中,已然不能满足查询要求了,此时我们引入Redis作为查询的缓存层,将业务中的热数据保存到Redis,扩展传统关系型数据库的服务能力,用户通过应用直接从Redis中快速获取常用数据,或者在交互式应用中使用Redis保存活跃用户的会话,都可以极大地降低后端关系型数据库的负载,提升用户体验。
SELECT * FROM table ORDER BY id LIMIT 1000, 10;
如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决?
由于一次导入千万条数据性能较低,因此决定把后面的1000万行,拆分为两部分,分两次导入,如下操作:
MySQL 分表3种方法 摘要: 当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会卡在那儿了,那么分表的目的就在于此,减小数据库的负担,缩短查询时间。 一,先说一下为什么要分表 当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。 根据个人经验,mysql执行一个sql的过程如下: 1、接收到sql; 2、把sql放到排队队列中 ; 3、执行sql; 4、返回执行结果。
推荐阅读 微服务:springboot系列教程学习 源码:Javaweb练手项目源码下载 调优:十五篇好文回顾 面试笔试:面试笔试整理系列 一,先说一下为什么要分表 当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。 根据个人经验,mysql执行一个sql的过程如下: 1、接收到sql; 2、把sql放到排队队列中 ; 3、执行sql; 4、返回执行结果。 在这个执行过程中最花时间在什么地方呢?第一,是排
查看代码打印1 SELECT * FROM table ORDER BY id LIMIT 1000,10; 以上SQL语句在原理上和在实际操作中是不会存在什么问题,可是当table表的数据量达到几十万以上的时候。上面的语句运行一遍,可能会要运行个十几秒的时间,而且当页数越靠后的话,运行的时间会越长。这个时候我们就须要找到一种更快的查询办法来替代这样的操作了。
今天在说Mysql查询优化之前,我先说一个常见的面试题,并带着问题深入探讨研究。这样会让大家有更深入的理解。
大家在大数据开发的学习中,肯定会遇到各种各样的数据库,比如MySQL,但是它是全能的吗?当然不是。所以才会出现各种各样的数据库,以适用于不同的场景,今天介绍的MongoDB就是如此。
由于最近疫情的影响,相信最近很多小伙伴都忙于线上办公或者面试?,笔者这里分享一道发生在大厂前端线上编程面试中的一道题目, 如何让 6000 万数据包和 300 万数据包在仅 50M 内存环境中求交集,
看到标题,有的童鞋心中暗想“数据删除有什么可提的呢?不就是执行个delete语句吗?有什么难的呀?”其实呢数据删除没有你想的这么简单,一般情况下公司会明确的要求数据只能逻辑删除,不能物理删除。那什么优势逻辑删除,什么又是物理删除呢?
MySQL批量插入操作相较于单次循环插入有较大的优势,在特定场景下,有比较重要的应用价值。
数据库的索引类似书籍的目录索引一样,有了索引,看书的时候就不用翻遍整本书,就可以根据目录页数直接跳转到目标内容,提高阅读和查询效率。数据库的索引也是如此,它的作用就是用来提升查询速度的,有了索引,MongoDB查询的时候就可以索引中找到条目后,直接跳转到目标collection的位置。
除了做程序的开发,有可能你还要自己做一下性能的测试,例如一个导入功能,你需要导入大批量的数据,多到什么程度。几万条甚至几十万条数据。
点击上方蓝字关注我们吧 作者:逸宸a 链接:https://www.jianshu.com/p/cbdef47fb837 对MySQL的性能和亿级数据的处理方法思考,以及分库分表到底该如何做,在什么场景比较合适? 比如银行交易流水记录的查询 限盐少许,上实际实验过程,以下是在实验的过程中做一些操作,以及踩过的一些坑,我觉得坑对于读者来讲是非常有用的。 首先:建立一个现金流量表,交易历史是各个金融体系下使用率最高,历史存留数据量最大的数据类型。现金流量表的数据搜索,可以根据时间范围,和个人,以及金额进
2,统计行数时,如果不加where,它可以直接取到结果,因为它可以利用存储引擎的特性直接获得这个值,比如count(*)
今天因为项目需要,想测试一下读取百万级数量数据的速度如何,无奈数据库没有现成符合要求的数据,网上百度一番有很都不错的文章,但是需要涉及到一些存储过程和用php代码什么的,虽说可以实现,但是感觉另外再弄这些比较麻烦,没有通用性,于是在几篇文章的参考下,.自己写了一段代码,直接生成的数据还是比较方便的,并且不是重复的数据.网上很多都是重复的,我只是做了一点小的修改,测试数据库是mysql 5.5,存储形式是MyISAM,每次生成的数据量是之前的一倍.测试的量有限,如有什么疑问欢迎评论指正.
💖✨MySQL一万字深度总结,基础+进阶(一) 👨🎓作者:Java学术趴 🏦仓库:Github、Gitee ✏️博客:CSDN、掘金、InfoQ、云+社区 💌公众号:Java学术趴 🚫特别声明:原创不易,未经授权不得转载或抄袭,如需转载可联系小编授权。 🙏版权声明:文章里的部分文字或者图片来自于互联网以及百度百科,如有侵权请尽快联系小编。微信搜索公众号Java学术趴联系小编。 ☠️每日毒鸡汤:太阳请不要晒黑我的皮肤,请晒黑我爸爸妈妈的头发。 👋大家好!我是你们的老朋友Java学术趴,今天继续给大家分
一般的使用Excel的工作习惯 1.保留原始文件,新建一个Sheet进行处理数据存放,或者另外COPY一份新的文档,尽量保持原始数据的原貌,因为我们都不知道啥时会出错,需要重新开始。 2.每个sheet进行名称的标注,便于自己,也便于阅读者直观的知道每个sheet的内容,譬如:【结论数据】丶【透视表】丶【原始数据源】丶【中间表】等等。如果存在没有数据的sheet,那就删掉吧。 3.数据结论,尽量清晰有序,譬如在标识【结论数据】的sheet,由上之下进行每个结果数据表的排序,或者每个结论数据表各自用sheet
遇到的问题 1、最初阶段 系统中做了一个监控功能,用于记录所有的请求数据,数据插入频繁,量非常大,比如一天1000万条。考虑到数据插入的效率,就使用内存KV缓存来保存。写入过程是在接收到请求后放入到线程池中,然后线程池异步处理后写入。到这问题基本上没什么事情。 2、新的需求 后面数据保存了,就需要在运维系统中可以查询到,所以这个缓存还必须是分布式的。于是就换成了redis,这样系统都可以连接到。但是数据量太大,需要分页查询,这就有点头痛了。还好redis是可以支持有序集合的,而且可以通过zrange来获取指
大家在日常运维数据库过程当中经常会遇到数据删除的情况,如果生产环境数百万条数据中,删除其中一部分数据,应该如何不影响生产环境使用的情况下进行数据删除呢,这里给大家分享一个比较简单且实用的删除方式,避免一次性删除造成数据库直接卡死,从而影响正常生产使用。
方法5: 利用MySQL支持ORDER操作可以利用索引快速定位部分元组,避免全表扫描
Druid(德鲁伊)是一个分布式的、支持实时多维 OLAP 分析、列式存储的数据处理系统,支持高速的实时数据读取处理、支持实时灵活的多维数据分析查询。在Druid数十台分布式集群中支持每秒百万条数据写入,对亿万条数据读取做到亚秒到秒级响应。此外,Druid支持根据时间戳对数据进行预聚合摄入和聚合分析,在时序数据处理分析场景中也可以使用Druid。
当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
一个好的web应用,最重要的一点是有着优秀的访问性能。数据库MySQL是web应用的组成部分,也是决定其性能的重要部分。所以提升MySQL的性能至关重要。
原文:http://www.enmotech.com/web/detail/1/709/1.html (复制链接,打开浏览器即可查看原文)
事情是这样子的,由于公司要推行降本增效,尽量使得服务器能满负载的去工作,我负责的项目由于对数据库的使用比较轻度,所以就降低配置去使用。而一个新的需求,需要稍微复杂一点的业务逻辑,所以需要对数据库增加一个字段,且增加一个索引,也就是做一点DDL语句的操作,但是由于表的数据量也不小(最大的一张表差不多800多万行,最少也有几百万条数据),所以在此之前,对大表加字段,加索引做了一个比较深入的学习。
对MySQL的性能和亿级数据的处理方法思考,以及分库分表到底该如何做,在什么场景比较合适?
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
基准测试(benchmarking)是性能测试的一种类型,强调的是对一类测试对象的某些性能指标进行定量的、可复现、可对比的测试。
在认识binlog日志三种模式前,先了解一下解析binlog日志的命令工MySQLbinlog。mysqlbinlog工具的作用是解析mysql的二进制binlog日志内容,把二进制日志解析成可以在MySQL数据库里执行的SQL语句。binlog日志原始数据是以二进制形式存在的,需要使用mysqlbinlog工具转换成SQL语句形式。
为了满足每秒插入100万条数据的需求,小编建议采用以下技术方案,以提升数据库系统的吞吐量和性能。
超出最大数据包限制了,可以通过调整max_allowed_packet限制来提高可以传输的内容,不过由于30万条数据超出太多,这个不可取,梭哈看来是不行了 😅😅😅
假如我们现在是一个小创业公司(或者是一个 BAT 公司刚兴起的一个新部门),现在注册用户就 20 万,每天活跃用户就 1 万,每天单表数据量就 1000,然后高峰期每秒钟并发请求最多就 10 个。我的天,就这种系统,随便找一个有几年工作经验的,然后带几个刚培训出来的,随便干干都可以。 结果没想到我们运气居然这么好,碰上个 CEO 带着我们走上了康庄大道,业务发展迅猛,过了几个月,注册用户数达到了 2000 万!每天活跃用户数 100 万!每天单表数据量 10 万条!高峰期每秒最大请求达到 1000!同时公司还顺带着融资了两轮,进账了几个亿人民币啊!公司估值达到了惊人的几亿美金!这是小独角兽的节奏! 好吧,没事,现在大家感觉压力已经有点大了,为啥呢?因为每天多 10 万条数据,一个月就多 300 万条数据,现在咱们单表已经几百万数据了,马上就破千万了。但是勉强还能撑着。高峰期请求现在是 1000,咱们线上部署了几台机器,负载均衡搞了一下,数据库撑 1000QPS 也还凑合。但是大家现在开始感觉有点担心了,接下来咋整呢… 再接下来几个月,我的天ÿ
领取专属 10元无门槛券
手把手带您无忧上云