若是少量数据;可选择的解决方案有很多。常用的用 Pl/SQL developer工具,或者手动转换为 INSERT 语句,或者通过API。但数据量大;用上面的方法效率太烂了。本文来说说 Oracle 数据的加载和卸载。
Hive有自己的类SQL,即HQL,它将SQL解析为M/R Job,然后在hadoop上执行。允许开发自定义mapper和reducer来处理内建的mapper和reducer无法完成的复杂分析工作再查询(UDF)。而启动MapReduce是一个高延迟的一件事,每次提交任务和执行任务都需要消耗很多时间,这也就决定Hive只能处理一些高延迟的应用。
先来说下Hive中内部表与外部表的区别: Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径, 不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除, 而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。 需要注意的是传统数据库对表数据验证是 schema on write(写时模式),而 Hive 在load时是不检查数据是否 符合schema的,hive 遵循的是 s
首先弄清楚什么是元数据和表数据:元数据就是表的属性数据,表的名字,列信息,分区等标的属性信息,它是存放在RMDBS传统数据库中的(如,mysql)。表数据就是表中成千上万条数据了。
使用JdbcStorageHandler,可以将Hive连接到MySQL,PostgreSQL,Oracle,DB2或Derby数据源。然后,您可以创建一个表示数据的外部表,并查询该表。
Hive 是建立在 Hadoop 基础上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 QL ,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
这一节,我们一起来学习如何数据库的备份和恢复,即导入和导出OushuDB数据。 再导入导出之前,为了保证你有足够的磁盘空间来存储备份文件,我们可以通过如下命令得到数据库大 小: mydb=# SELECT sodddatsize FROM hawq_toolkit.hawq_size_of_database WHERE sodddatname=’mydb’; 如果待备份表是压缩的,这个查询给出的大小是压缩后的大小,如果你的备份是没有压缩的,需要乘上 一个压缩比来计算所需空间。具体的空间占用情况,需要根据大家的实际情况来分析判断。 数据库的备份和恢复 通过gpfdist外部表导入数据 启动gpfdist文件服务器 把需要加载的数据文件放到gpfdist数据目录 定义外部表 加载数据 通过gpfdist外部表导出数据 启动gpfdist文件服务器 准备导出的表 定义外部表 导出数据 hdfs外部表导入数据 把需要加载的数据文件放到hdfs数据目录 定义外部表 加载数据 hdfs外部表导出数据 准备导出的表 定义外部表 导出数据 使用COPY命令导入导出数据
在之前的博文中分享了关于数据抽取流程的一些思路,整体来说,数据的抽取是辅助,数据的加载是关键。加载的过程中每一步需要格外关注,稍有偏差就可能造成数据的损坏或者丢失。 为了更加清晰的说明通过外部表来实现
假设我们现在建立一张student表,它有两个字段,id(int)和name(string)。
假设张三是xx公司的大数据开发工程师,现在xx Music有一千万用户在每天播放音乐和收藏音乐,那么张三要如何设计音乐榜单数据仓库来进行数据分析呢。
因为业务需要,有个临时的活动需要DBA来支持一些数据业务,问题来了,需要从MySQL端同步一部分数据到Oracle端,然后从Oracle端匹配查 到相应的数据返回给MySQL,至于原因,也是不同的业务系统,不同的权限分配,还没法做到一个应用端去读取这些信息,而且也有安全的考虑,大体就是两部 分的数据也是互相补充,但又彼此独立,是一个全集和子集的关系。 这个流程本来从开发的角度来看似乎是一头雾水,所以交给他们来规划就容易出现问题,最后沟通后的流程是下面的形式。 下面这个图左边是Oracle的环境,右边是MyS
因兄弟项目中mysql有点扛不住了,要做sql优化,但是业务有点小复杂,优化起来有点麻烦(sql嵌套有点多),便想着用Mpp数据库Greenplum测试下,看性能和复杂度怎么样,趟趟水。
关于In与Exists的比较,先说结论,归纳出IN 和Exists的适用场景: 1)IN查询在内部表和外部表上都可以使用到索引。 2)Exists查询仅在内部表上可以使用到索引。 3)当子查询结果集很大,而外部表较小的时候,Exists的Block Nested Loop(Block 嵌套循环)的作用开始显现,并弥补外部表无法用到索引的缺陷,查询效率会优于IN。 4)当子查询结果集较小,而外部表很大的时候,Exists的Block嵌套循环优化效果不明显,IN 的外表索引优势占主要作用,此时IN的查询
Hive存储的是逻辑上的数据仓库信息,包括表的定义、数据的存储位置(HDFS路径)、分区和表的元数据等。实际的数据文件存储在HDFS上,Hive通过HQL(Hive Query Language)实现对这些数据的SQL-like查询,本质上是将SQL查询转换为MapReduce任务在Hadoop上执行。
外部表是指不存在于数据库中的表。通过向Oracle提供描述外部表的元数据,可以把一个操作系统文件当成一个只读的数据库表,就像这些数据存储在一个普通数据库表中一样来进行访问。外部表是对数据库表的延伸。外部表只能在Oracle 9i之后的版本来使用。
外部表是一个数据存储在数据库外部的OushuDB数据库表,允许OushuDB对存储在数据库之外的数据源中的数据进行访问,就像数据存储在常规数据库表中一样。外部表分可读和可写,数据可以从外部表读取或写入。它和常规数据库表的用法一样, 可以执行INSERT、SELECT、JOIN等操作。外部表通常用于快速并行加载和卸载数据库数据。
外部表说明 外部表因为是指定其他的hdfs路径的数据加载到表当中来,所以hive表会认为自己不完全独占这份数据,所以删除hive表的时候,数据仍然存放在hdfs当中,不会删掉
问题导读 1.hive数据分为那两种类型? 2.什么表数据? 3.什么是元数据? 4.Hive表里面导入数据的本质什么? 5.表、分区、桶之间之间的关系是什么? 6.外部表和表的区别是什么? Hive的数据分为表数据和元数据,表数据是Hive中表格(table)具有的数据;而元数据是用来存储表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。下面分别来介绍。 一、Hive的数据存储 在让你真正明白什么是hive 博文中我们提到Hive是基于Hadoop分布式文件系统的,
1、CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
这里创建了表page_view,有表的注释,一个字段ip的注释,分区有两列,分别是dt和country。ROW FORMAT DELIMITED关键字,是用来设置创建的表在加载数据的时候,支持的列分隔符。不同列之间用一个\001分割,
今天说的这个案例发生在年初,某银行的一个数仓系统整体性能不佳,其中还有个奇怪的问题就是,两个结构比较类似的表,用sqlldr加载4000万左右的数据,一个需要1.5小时,另一个就要4.5小时,这对一个跑批业务来说影响是非常大的。客户自查了挺长时间也没找到原因。
摘要:本文介绍了打造 Flink + StarRocks + Dinky 的极速统一分析平台经验分享。内容包括:
Hive是什么?其体系结构简介* Hive的安装与管理* HiveQL数据类型,表以及表的操作* HiveQL查询数据*** Hive的Java客户端** Hive的自定义函数UDF* 1:什
环境: 服务端:RHEL6.4 + Oracle 11.2.0.4 目录: 一、 创建外部表
在创建外部表定义时,必须指定文件格式和文件位置 三种用来访问外部表数据源的协议:gpfdist, gpfdists和gphdfs
将 mysql 数据库中的 hive 数据库中的 ROLES 表数据导入到 HDFS 中的 /tmp/root/111 目录下。执行代码如下:
修改数据库 可以使用alter database 命令来修改数据库的一些属性。但是数据库的元数据信息是不可更改的,包括数据库的名称以及数据库所在的位置
创建一个外部表,使用CREATE EXTERNAL TABLE命令。在这个命令里,需声明新表名称,各列名称及其数据类型,基于命令的EXECUTE子句或基于URL的LOCATION子句的外部数据来源,数据格式。
我们知道,Hive的外部表可以连接HDFS中的任何目录的数据,那么Hive的外部表是否可以连接本身的内部表的数据呢?
对于外部表的使用而言,可能是既陌生又熟悉的感觉,说陌生可能自己真正的使用机会要少一些,而熟悉可能是大家比较常用的通过外部表来查看数据库日志,其实外部表还有更丰富的内容。 当然了外部表的使用都是基于目录来实现的。外部表调用的引擎有两个,一个oracle_datapump引擎,一个是oracle_loader引擎,在使用中和datapump,sql*loader都是有一定的关联的。 比如下面的例子。 我们需要导出emplyees中的数据,就可以使用如下的方式。基本是做数据的导出的情况比较多。导出文件为emp.d
外部表只能在Oracle 9i 之后来使用。简单地说,外部表,是指不存在于数据库中的表。通过向Oracle提供描述外部表的元数据,我们
Hive是基于Hadoop分布式文件系统的,它的数据存储在Hadoop分布式文件系统中。Hive本身是没有专门的数据存储格式,也没有为数据建立索引,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据。所以往Hive表里面导入数据只是简单的将数据移动到表所在的目录中 Hive的数据分为表数据和元数据,表数据是Hive中表格(table)具有的数据;而元数据是用来存储表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。下面分别来介绍。 一、Hive的数据存储 在让你真正明白什么是hive 博文中我们提到Hive是基于Hadoop分布式文件系统的,它的数据存储在Hadoop分布式文件系统中。Hive本身是没有专门的数据存储格式,也没有为数据建立索引,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据。所以往Hive表里面导入数据只是简单的将数据移动到表所在的目录中(如果数据是在HDFS上;但如果数据是在本地文件系统中,那么是将数据复制到表所在的目录中)。 Hive中主要包含以下几种数据模型:Table(表),External Table(外部表),Partition(分区),Bucket(桶)(本博客会专门写几篇博文来介绍分区和桶)。 1、表:Hive中的表和关系型数据库中的表在概念上很类似,每个表在HDFS中都有相应的目录用来存储表的数据,这个目录可以通过${HIVE_HOME}/conf/hive-site.xml配置文件中的 hive.metastore.warehouse.dir属性来配置,这个属性默认的值是/user/hive/warehouse(这个目录在 HDFS上),我们可以根据实际的情况来修改这个配置。如果我有一个表wyp,那么在HDFS中会创建/user/hive/warehouse/wyp 目录(这里假定hive.metastore.warehouse.dir配置为/user/hive/warehouse);wyp表所有的数据都存放在这个目录中。这个例外是外部表。 2、外部表:Hive中的外部表和表很类似,但是其数据不是放在自己表所属的目录中,而是存放到别处,这样的好处是如果你要删除这个外部表,该外部表所指向的数据是不会被删除的,它只会删除外部表对应的元数据;而如果你要删除表,该表对应的所有数据包括元数据都会被删除。 3、分区:在Hive中,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。比如wyp 表有dt和city两个分区,则对应dt=20131218,city=BJ对应表的目录为/user/hive/warehouse /dt=20131218/city=BJ,所有属于这个分区的数据都存放在这个目录中。 4、桶:对指定的列计算其hash,根据hash值切分数据,目的是为了并行,每一个桶对应一个文件(注意和分区的区别)。比如将wyp表id列分散至16个桶中,首先对id列的值计算hash,对应hash值为0和16的数据存储的HDFS目录为:/user /hive/warehouse/wyp/part-00000;而hash值为2的数据存储的HDFS 目录为:/user/hive/warehouse/wyp/part-00002。 来看下Hive数据抽象结构图
ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’, 这里指定表存储中列的分隔符,默认是 \001,这里指定的是逗号分隔符,还可以指定其他列的分隔符。
在生产系统中有些时候需要保证一些表的只读特性,不允许表的数据被轻易修改。可能有一下的场景比较适用。 1) 一些系统中有一些类似数据字典信息的表。这些表的信息基本都是稳定的,不会轻易的改变。 2) 可能需要从一些外部系统中拷贝一些数据做比对和参考,不希望这些“临时”表的数据被认为修改。 3) 系统的核心表数据不想被人为的误删。 对于以上的场景可以有下面的实现思路。 1) 首先就是通过role,privilege来做限定。我们可以创建一些连接用户,这些连接用户中只存在同义词,如果只需要有只读权限,只在role
最近在写SQL语句时,对选择IN 还是Exists 犹豫不决,于是把两种方法的SQL都写出来对比一下执行效率,发现IN的查询效率比Exists高了很多,于是想当然的认为IN的效率比Exists好,但本着寻根究底的原则,我想知道这个结论是否适用所有场景,以及为什么会出现这个结果。
在前几篇中讨论过海量数据的并行加载,基本思路就是针对每一个物理表都会有一个对应的外部表,在做数据迁移的时候,如果表有上百G的时候,一个物理表对应一个外部表性能上会没有任何提升。如果需要做数据插入的时候,对undo是极大的挑战,从某种程度上而言,性能应该要比datapump要差。这个时候可以考虑一个物理表对应多个外部表,比如一个表有100G。可以考虑生成100个external dump 文件,然后加载生成100个外部表,每个dump文件对应一个外部表,这样做数据的插入的时候就相对容易控制了。每一个外部表的数
HIVE中的表以及语法 一、HIVE的表 HIVE使用的功能性的表格分为四种:内部表、外部表、分区表、分桶表。 1、内部表、外部表 1.特点 创建hive表,经过检查发现TBLS表中,hive表的类型为MANAGED_TABLE,即所谓的内部表。 内部表的特点是,先有表后有数据,数据被上传到表对应的hdfs目录下进行管理。 其实内部表的流程和sql数据库的表流程是几乎一样的。 但是在真实开发中,很可能在hdfs中已经有了数据,希望通过hive直接使用这些数据作为表内容
在生产环境的数据迁移中,发生误操作真是很不愿意看到,今天自己总结了一下,从个人的经验来看有以下的几种操作或者是失误导致的问题。有一些错误自己已经犯过。 外键 不管是使用imp/impdp,sqlldr还是使用Insert append的方式导入数据,如果存在外键的约束,在数据导入前最好都设置为disable,要不数据导入的时候很可能发生冲突,因为批量的数据导入很可能开启多个并发进程,如果你不能完全控制导入的先后顺序,最好还是disable掉。 触发器 触发器在数据导入前最好和开发组确认,如果忽略了这个
基于 Hadoop 的一个数据仓库工具: hive本身不提供数据存储功能,使用HDFS做数据存储, hive也不分布式计算框架,hive的核心工作就是把sql语句翻译成MR程序 hive也不提供资源调度系统,也是默认由Hadoop当中YARN集群来调度 可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能
create EXTERNAL table tableName(字段名称 字段类型,字段名称 字段类型) 建外部表需要指定数据的存储路径。通过LOCATION进行指定。
基于传统关系型数据库的稳定性,还是有很多企业将数据存储在关系型数据库中;早期由于工具的缺乏,Hadoop与传统数据库之间的数据传输非常困难。基于前两个方面的考虑,需要一个在传统关系型数据库和Hadoop之间进行数据传输的项目,Sqoop应运而生。
@ 目录 库的常见操作 1.增 2.删 3.改 4.查 表的常见操作 1.增 2.删 3.改 4.查 库的常见操作 1.增 CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name [COMMENT database_comment] // 库的注释说明 [LOCATION hdfs_path] // 库在hdfs上的路径 [WITH DBPROPERTIES (property_name=property_value, ..
Tech 导读 文章主要介绍了UData系统的设计理念,描述了该系统的查询引擎基于StarRocks在联邦查询方面做了哪些增强,从而使一条ES外表的联邦聚合关联查询性能提升数倍。通过本文,读者可以了解SQL语句在MPP查询引擎上的基本执行流程,并可以基于此考虑如何对于这一过程进行优化和改造。
Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类 SQL查询功能。
Hive 是由 Facebook 开源的基于 Hadoop 的数据仓库工具,用于解决海量「结构化日志」的数据统计。
今天,朋友圈和公众号被鸿蒙刷屏,作为开发者,由衷感叹人类科技已经发展得这么先进了,基于微内核的全场景分布式OS,虽然不太懂是什么意思,但仍然觉得高大上。
领取专属 10元无门槛券
手把手带您无忧上云