#进阶10:合并查询(联合查询) 引入:一个结果集的查询的数据来自于多张表。但多张表之间没有任何关联关系。
数仓分层是数据仓库设计中十分重要的一个环节,优秀的分层设计能够让整个数据体系更容易理解和使用 本文的大纲 001,介绍数据分层的作用 002,分层设计的原则以及介绍一种通用的数据分层设计 003,具体案例 004,落地实践意见 005,思考
对于MySQL,如果一个SQL没有指定order by 列名,此时的查询结果集的数据顺序是不可预期的。
但是,MySQL实际执行查询的顺序与书写顺序不同。MySQL优化器会根据内部算法和数据统计信息来决定最佳的执行顺序。以下是MySQL查询语句各个子句的实际执行顺序:
最近公司业务系统中的死锁较多,比较担心,并且最近在群里面,经常听到有一些群友,提到为什么MYSQL的死锁监控上比较LOW,但还好的是MYSQL的死锁不是太多。这里触发了我关于死锁的一些看法,延伸到表设计,系统的设计。
联合查询:union,将多次查询(多条select语句)的结果,在字段数相同的情况下,在记录的层次上进行拼接。
此优化方案指的是通过优化 SQL 语句以及索引来提高 MySQL 数据库的运行效率,具体内容如下:
万万没有想到,学个数据库竟然还能接触到笛卡尔积?后面不会学着学着还会出现牛顿吧……
点击关注公众号,Java干货及时送达 这是一条标准的查询语句: 这是我们实际上SQL执行顺序: 我们先执行from,join来确定表之间的连接关系,得到初步的数据 where对数据进行普通的初步的筛选 group by 分组 各组分别执行having中的普通筛选或者聚合函数筛选。 然后把再根据我们要的数据进行select,可以是普通字段查询也可以是获取聚合函数的查询结果,如果是集合函数,select的查询结果会新增一条字段 将查询结果去重distinct 最后合并各组的查询结果,按照order by的条
可以看到生成工具为 office1 和 office2 两个外键列都生成了符合外键规范的数据:
之前的SQL基础1中已经介绍了部分Select的内容,但是,实际使用中select 还有很多其他的用法,本文会再介绍部分select的其他用法。
mysq中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
数据库如何判定,当前这一条记录是重复的?先查找,再插入。但是加上约束之后,数据库的执行过程可能就变了。因此执行时间或者效率会受到很大影响。
数据分层是数据仓库设计中十分重要的一个环节,优秀的分层设计能够让整个数据体系更易理解和使用。而目前网络中大部分可以被检索到相关文章只是简单地提及数据分层的设计,或缺少明确而详细的说明,或缺少可落地实施的方案,或缺少具体的示例说明。
表的生成参考《 3. SQL–数据库基础查询操作》。 前几节所总结的查询,都是基于单张表格进行的,如果单张表格的信息不足以达到查询的目的,就需要将他们组合到一起形成多张表格。
MySQL 表空间可分为共享表空间和单表空间;其中共享表空间又可分为系统表空间和通用表空间。
子查询外部的语句可以是INSERT / UPDATE / DELETE / SELECT 。
如我输入的命令行:cd C:\Program Files\MySQL\MySQL Server 5.7\bin
点击下载按钮,如果提示登录,就在登录按钮下方点击No thanks, just start my download.
今天开发同学提了一个需求,是希望对某一个时间范围的表做DDL操作,看起来好像复杂度也不高。
Q 题目 MySQL支持哪几类分区表? A 答案 表分区是指根据一定规则,将数据库中的一张表分解成多个更小的,容易管理的部分。从逻辑上看,只有一张表,但是底层却是由多个物理分区组成,每个分区都是一个独立的对象。分区有利于管理大表,体现了“分而治之”的理念。一个表最多支持1024个分区。 在MySQL 5.6.1之前可以通过命令“show variables like '%have_partitioning%'”来查看MySQL是否支持分区。若have_partintioning的值为YES,则表示支持分
本文主要介绍Apache Doris在京东广告报表查询场景下的应用。文章将从我们原有系统开始讲述,包括我们遇到的问题,面临的挑战,以及我们为何选择使用Apache Doris。最后将介绍Doris在我们在生产环境下的使用情况,包括Apache Doris在京东“618”,“双11”大促中的表现。希望通过我们的使用实践为大家提供一些经验参考,也欢迎大家对我们的不足之处提出建议。
下面来学习互联网行业使用最为广泛的关系型数据库 MySQL,它的知识点结构图如下所示。
详见: https://www.cnblogs.com/NorthPoet/p/16901095.html
create database <dbname> 创建名字为dbname的数据库
DW :data warehouse 翻译成数据仓库 DW数据分层,由下到上为 DWD,DWB,DWS DWD:data warehouse detail 细节数据层,有的也称为 ODS层,是业务层与数据仓库的隔离层 DWB:data warehouse base 基础数据层,存储的是客观数据,一般用作中间层,可以认为是大量指标的数据层。 DWS:data warehouse service 服务数据层,基于DWB上的基础数据,整合汇总成分析某一个主题域的服务数据,一般是宽表。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
MySQL调优是我们面试中经常会被问到的事情,就算我们没有做过调优方面的工作,我们也要不得不学习以下知识,以便能回复面试官
如果innodb_file_per_table 为 ON 将建立独立的表空间,文件为tablename.ibd;
本文作者:康凯森,来源于:https://blog.bcmeng.com,文章写的非常详细,从各个方面对Kylin和Doris进行了对比。
Greenplum(以下简称GP)支持多种数据导入方法,比如GP自带的gpfdist,通过gpfdist+外部表的形式将远端服务器上的数据并行导入到GP中,再比如GP自带的COPY命令,能够将本地的数据按照一定格式导入到GP中。除此之外,还有一些比较优秀的第三方导入工具,本文主要介绍DataX。
alter table user_msg change user_nickname user_newname varchar(30) comment “用户昵称”;
本系列将会讲解MySQL数据库从基础,入门,运维,本章将会对MySQL数据库的客户端连接与数据模型,SQL等知识。
SQL 语句优化是一个既熟悉又陌生的话题。面对千奇百怪的 SQL 语句,虽然数据库本身对 SQL 语句的优化一直在持续改进、提升,但是我们不能完全依赖数据库,应该在给到数据库之前就替它做好各种准备工作,这样才能让数据库来有精力做它自己擅长的事情。
在数据仓库的建设过程中,根据事实表与维表的关系,经常将数据模型分为星型模型、雪花模型及星座模型,那么,这几种数据模型有什么区别呢?在前期规划设计时,又应该选择星型模型,雪花模型还是星座模型呢?下面,咱们就来一探究竟。
性能优化(Optimize)指的是在保证系统正确性的前提下,能够更快速响应请求的一种手段。而且有些性能问题,比如慢查询等,如果积累到一定的程度或者是遇到急速上升的并发请求之后,会导致严重的后果,轻则造成服务繁忙,重则导致应用不可用。它对我们来说就像一颗即将被引爆的定时炸弹一样,时刻威胁着我们。因此在上线项目之前需要严格的把关,以确保 MySQL 能够以最优的状态进行运行。同时,在实际工作中还有面试中关于 MySQL 优化的知识点,都是面试官考察的重点内容。
本来村民也是打算写一写基础教程的,但是 B 站 UP 主高新强的系列视频 —— MySQL8零基础入门视频教程 十分照顾初学者,正适合新手村。村民看下来之后觉得很不错,视频内容比较全面,分 P 目录详细,示范操作讲解细致,因此就推荐给大家,但村民也会根据自己的实际需求按照视频的分P标题写一点分享,大家在观看视频的时候可以把村民的教程放在一边进行对照。
看上去关系型数据库很多,繁杂,但其实我们都是用关系型数据库SQL语言来对这些数据库进行操作的。而 SQL编程语言是统一标准,所以即便只掌握了MySQL数据库,在上手Oracle等数据库操作方式也是一致的
MYSQL-深入到精通mysql教程,请进入知识星球-spark技术学院获取 ---- 基本操作语句创建查看 1,创建数据库: 进入MySql数据库环境后,就可以使用CREATE DATABASE语句创建自己的数据库了。 CREATE DATABASE 数据库名;>create database study; 注1:数据库名可以由任意字母、数字、下面(_)和美元符号($)组成,但不能由单独的数字组成,也不能为MySQL关键字,而且长度还不能超过64个字符。在windows系统下,数据库名不区分大小写,在
自连接查询,顾名思义,就是自己连接自己,也就是把一张表连接查询多次。我们先来学习一下自连接的查询语法:
1.Ubuntu安装MySQL客户端流程: - 登录navicat官网下载 - 将压缩包拷贝ubuntu中进行解压,解压命令:tar zxvf navicat.tar.gz - 进入解压目录,运行命令./start_navicatt - 如果试用是灰色的则进行下一步 - 删除 .navicat64/ 隐藏文件,再次运行即可 - 如果试用界面是乱码的则修改配置文件,改成如下形式(vim常用操作请查看我的另一篇随记): - 再次执行第三步操作
说明2:as dept_name 是给dept.name 起的别名,防止查询结果中出现两个name字段,会有歧义
同时从多张数据表中查取到需要的数据即是多表查询. 多表查询时,参与查询的表中每条数据进行组合,这种效果称为笛卡尔积 。
当 MySQL 单表记录数过大时,数据库的 CRUD 性能会明显下降,一些常见的优化措施如下:
垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。表的记录并不多,但是字段却很长,表占用空间很大,检索表的时候需要执行大量的IO,严重降低了性能。这时需要把大的字段拆分到另一个表,并且该表与原表是一对一的关系。
领取专属 10元无门槛券
手把手带您无忧上云