首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MySQL8.0 InnoDB并行查询特性

MySQL经过多年的发展已然成为最流行的数据库,广泛用于互联网行业,并逐步向各个传统行业渗透。之所以流行,一方面是其优秀的高并发事务处理的能力,另一方面也得益于 MySQL 丰富的生态。MySQL 在处理 OLTP 场景下的短查询效果很好,但对于复杂大查询则能力有限。最直接一点就是,对于一个 SQL 语句,MySQL 最多只能使用一个 CPU 核来处理,在这种场景下无法发挥主机CPU多核的能力。MySQL 没有停滞不前,一直在发展,新推出的 8.0.14 版本第一次引入了并行查询特性,使得check table和select count(*) 类型的语句性能成倍提升。虽然目前使用场景还比较有限,但后续的发展值得期待。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    告别一步一步来,你们一起上好了

    随着互联网的高速发展,企业的数字化改革与精细化运营,均对数据库能力提出了越来越高的要求,数据分析能力、异构数据处理能力等愈发重要。公司各类报表整合,年终数据盘点,分析预测等越来越多的业务开始需要进行复杂查询。 并且,爆炸性的数据量增长也使得传统的数据库能力难以应对。企业的很多业务将对数据的实时性和效率性要求越来越高,想一想你的企业是否也是这样: 想!更早更快的在数据中识别和阻断漏洞,保证业务平稳运行; 想!更快更准的定位数据,提升服务效率; 想!更多更丰富的指标和计算口径,实现业务的快速增长; 但,多数的

    02

    面试官: ClickHouse 为什么这么快?

    这两种方法中,并没有哪一种严格地比另一种好。运行时代码生成可以更好地将多个操作融合在一起,从而充分利用 CPU 执行单元和流水线。矢量化查询执行不是特别实用,因为它涉及必须写到缓存并读回的临时向量。如果 L2 缓存容纳不下临时数据,那么这将成为一个问题,如果我们要尽量使块的大小足够小,从而 CPU 缓存能够容纳下临时数据。在这个假设下,与其他计算相比,读写临时数据几乎是没有任何开销的(相比后者优点:拆分流水线使得中间数据缓存、获取同时运行的类似查询的中间数据以及相似查询的流水线合并等功能很容易实现,并且矢量化查询执行更容易利用 CPU 的 SIMD 功能)。论文表明,将两种方法结合起来是更好的选择,clickhouse 使用了矢量化查询执行,同时初步提供了有限的运行时动态代码生成。

    04

    python的多线程是否没有用了[通俗易懂]

    相同的代码,为何有时候多线程会比单线程慢,有时又会比单线程快? 这主要跟运行的代码有关: 1、 CPU密集型代码 (各种循环处理、计数等等 ),在这种情况下,由于计算工作多, ticks计数很快就会达到 100阈值,然后触发 GIL的释放与再竞争 (多个线程来回切换当然是需要消耗资源的),所以 python下的多线程遇到 CPU密集型代码时,单线程比多线程效率高。 IO密集型代码 (文件处理、网络爬虫等 ),多线程能够有效提升效率 (单线程下有 IO操作会进行 IO等待,造成不必要的时间浪费,而开启多线程能在 线程 A等待时,自动切换到线程 B,可以不浪费 CPU的资源,从而能提升程序执行效率 )。

    02

    【地铁上的面试题】--基础部分--操作系统--进程与线程

    进程与线程是操作系统中重要的概念,用于实现并发执行和资源管理。它们在计算机系统中扮演着不同的角色,并具有各自的特点。 进程是程序在执行过程中的一个实体,是资源分配的基本单位。一个进程可以包含多个线程,每个线程共享进程的资源,包括内存、文件句柄、打开的文件等。每个进程都有自己的地址空间和独立的执行状态,通过操作系统进行管理和调度。进程之间相互独立,彼此隔离,拥有自己的地址空间,需要通过进程间通信来实现数据共享和协作。 线程是进程中的一个执行单元,是 CPU 调度的基本单位。一个进程可以包含多个线程,这些线程可以并发执行,共享进程的资源。线程之间共享同一进程的地址空间,可以直接访问进程的全局变量和堆内存,减少了进程间通信的开销。由于线程之间共享资源,所以需要采取同步机制来避免数据竞争和冲突。 进程与线程的基本特点如下:

    03
    领券