经过上一篇 where field in (...) 的开场准备,本文正式开启子查询系列,这个系列会介绍子查询的各种执行策略,计划包括以下主题:
在之前我们聊过了为什么 MySQL 索引要用 B+tree ,而且还这么快。里面曾多处提到了找数据要从我们电脑的磁盘上找,今天就来说一说 MySQL 中的数据在磁盘上,它到底是如何进行存储的?长什么样?
要说到在数据库相关的知识中,最吸引人的是什么,估计 80% 以上的人都会脱口而出 索引 这个词。我们都知道,这玩意真的好用,非常方便,而且往往优化 MySQL 的第一步就是去建立索引。那么今天,我们就开始学习了解索引这一块的内容,首先当然还是与索引相关的概念。
良好的schema设计原则是普遍适用的,但是MySQL有他自己的实现细节要注意,概况来讲,尽可能保持任何东西小而简单总是好的。
作者:廖为基,腾讯互娱应用开发工程师 1 背景介绍 本人在工作中接触到一个业务,由于需要创建一个非常大的表,字段比较多——超过了500个字段,但是在创建表的时候报了很多错误,让我折腾了很久才解决,于是为了防止问题复现,我决定一探究竟。 注:mysql 版本为5.7.18。 CREATE TABLE `process_xxxx` ( `id` int(11) NOT NULL AUTO_INCREMENT, `instance_id` varchar(255) NOT NULL, ...
在过去的半年时间里,研发团队内部尝试抓了一波儿慢查询SQL跟进处理率。发现有些同学对于慢查询处理的思路就是看看有没有用到索引,没有用到就试图加一个,实在不行就甩锅给这种情况是历史设计问题或者自行判定为用户特殊操作下触发的小概率事件,随即便申请豁免掉... 其实问题没有根本上解决。
使用 SHOW INDEX 命令来列出表中的相关的索引信息。可以通过添加\G来格式化输出信息
本文接续Mysql专栏 - mysql索引(一)这篇文章,在这篇文章的最后介绍了关于索引页也就是BTree索引页的设计形式,首先需要牢记在Btree索引中索引页也是数据页,在数据页的数据行扩展之后,慢慢扩展出索引页,最后索引页向上继续扩展,他们底层由双向链表进行串联,并且数据行其实也是链表的表现形式,最终组成的结构就是叶子节点是数据页,而上层则是链表组成的索引树。
在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。
一、什么是MySQL索引? 想象一下,你正在图书馆找一本特定的书。如果没有索引,你需要走过每一个书架,查看每一本书的标题,这会非常耗时。但如果有一个索引卡片,告诉你每本书的位置,你就可以直接走到那本书所在的书架,快速找到你想要的书。在MySQL数据库中,索引就类似于这个索引卡片,它帮助数据库快速定位到存储在表中的数据。 索引的好处
MySQL的索引分类问题一直让人头疼,几乎所有的资料都会给你列一个长长的清单,给你介绍什么主键索引、单值索引,覆盖索引,自适应哈希索引,全文索引,聚簇索引,非聚簇索引等……给人的感觉就是云里雾里,好像MySQL索引的实现方式有很多种,但是都没有一个清晰的分类。所以本人尝试总结了一下如何给MySQL的索引类型分类,便于大家记忆,由于MySQL中支持多种存储引擎,在不同的存储引擎中实现略微有所差距,下文中如果没有特殊声明,默认指的都是InnoDB存储引擎。
开发人员必备的9大MySQL索引和查询优化一般来说,程序员的面试内容分为两部分,一部分与编程相关,另一部分则与数据库相关。而作为数据库中的主流,MySQL更是涉及面试中的诸多高频考点。对于后端人员来说,不需要像专业的DBA那样精通MySQL,但也需要掌握相关的基本内容。小编在此总结了MySQL面试中常见7大领域的50道经典面试题,以期帮助大家顺利通过面试。
今天来讲讲 MySQL 索引的相关问题,谈到索引,其实算是有个非常有深度的问题,本人才疏学浅,能力有限,理解不当之处,请各位大佬批评指正!不胜感激;
MySQL5.7 新增两种字段类型:Json 和 Generated,Generated 型的产生和 Json 的关系密不可分,如果没有Generated 类型,Json 类型在强大,生产中可能也无法使用,因为 Json 不支持索引,但是如果要查询 Json 里的数据,没有索引就是全表扫描,在执行效率上肯定是不能用于生产环境的,但是有了 Generated 类型就不同了,Generated 类型简单地说是一个虚拟字段,值是不可更新的,值来源其他字段或者字段间计算或是转化而来的,这种类型是可以创建索引,利用 Generated 的特性,就可以间接的给 Json 类型中的 key 创建索引,解决 Json 不能创建索引的问题。简而言之, Generated 类型的产生,为 Json 类型在索引方面的问题提供了支持。JSON 的值包含单个值、数组、元组、标注的 Json 格式等几种格式。
可以用新华字典做类比:如果新华字典中对每个字的详细解释是数据库中表的记录,那么按部首或拼音等排序的目录就是索引,使用它可以让我们快速查找的某一个字详细解释的位置。
你是否真的理解这些优化技巧?是否理解它背后的工作原理?在实际场景下性能真有提升吗?我想未必。
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
CREATE UNIQUE INDEX 索引名 ON 表名(字段名1(长度),字段名2(长度))
熟悉 MySQL 的同学一定都知道,MySQL 对于复杂条件查询的支持并不好。MySQL 最多使用一个条件涉及的索引来过滤,然后剩余的条件只能在遍历行过程中进行内存过滤,对这个过程不了解的同学可以先行阅读一下《MySQL复杂where条件分析》。
在群里看到有小伙伴面试时,被问到 MySQL 该怎么优化的问题,不知道该如何回答。
在数据库中,索引可以理解为是一种单独的,物理的对数据库表中的一列或者多列的值进行排序的一种存储结构。它的作用是能让我们快速检索到想要的数据,好比字典的目录,通过目录的页码能快速找到我们想查找的内容。
简单回顾一下Mysql的历史,Mysql 是一个关系型数据库管理系统,由瑞典 Mysql AB 公司开发,目前属于 Oracle 公司。关系型数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
在关系数据库中,索引是一种数据结构,为存储引擎提高访问速度的数据结构,它一般是以包含索引键值和一个指向索引键值对应数据记录物理地址的指针的节点的集合的清单的形式存在。
说起MySQL的查询优化,相信大家积累一堆技巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
如果能在头脑中构建一幅MySQL各组件之间如何协同工作的架构图,有助于深入理解MySQL服务器。下图展示了MySQL的逻辑架构图。
说起MySQL的查询优化,相信大家收藏了一堆奇淫技巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
前言 说起MySQL的查询优化,相信大家收藏了一堆:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原理? 在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。 一、MySQL逻辑架构 如果能在头脑中构建一幅MySQL各组件之间如何协同工作的架构图,有助于深入理解MySQL服务器。下图展示了MySQL的逻辑架构图。
说起 MySQL 的查询优化,相信大家收藏了一堆奇技淫巧:不能使用 SELECT *、不使用 NULL 字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
在刚工作的时候,发现分页场景下,当offset变大,MySQL处理速度非常慢!具体sql如下:
原文:www.jianshu.com/p/d7665192aaaf转载自:架构之路
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原
说起MySQL的查询优化,相信大家积累一堆技巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?在实际场景下性能真有提升吗?我想未必。因而理解这些优化建议背后的原理就尤为重要,希望本文能让你重新审视这些优化建议,并在实际业务场景下合理的运用。
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型….. 你是否真的理解这些优化技巧?是否理解其背后的工作原理?
说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *、不使用NULL字段、合理创建索引、为字段选择合适的数据类型…
今天给大家介绍一款 Mysql 中附属的数据库,就是 information_schema 数据库,为什么说是附属呢?是因为这个数据库是在安装 Mysql 的同时就会安装到你电脑上。这个数据库里面主要存储了关于数据库里面的各种库、表、列、注释等信息。这个库对我们有什么用呢?有很大用处,尤其是当一个公司没有数据字典的时候,你就可以通过查看这个数据库,然后自己去梳理字典。
通过梳理 MySQL中的 SQL执行过程我们发现,任何流程的执行都存在其执行环境和规则,主要导致慢查询最根本的问题就是需要访问的数据太多,导致查询不可避免的需要筛选大量的数据。今天来跟大家聊聊问题定位和问题解决。
👨🎓作者:Java学术趴 🏦仓库:Github、Gitee ✏️博客:CSDN、掘金、InfoQ、云+社区 💌公众号:Java学术趴 🚫特别声明:原创不易,未经授权不得转载或抄袭,如需转载可联系小编授权。 🙏版权声明:文章里的部分文字或者图片来自于互联网以及百度百科,如有侵权请尽快联系小编。 ☠️每日毒鸡汤:一件事你犹豫去不去做,那就是该立即动身做的。 1. 索引优化分析 1.1 手写SQL和机读SQL 机器读的SQL和我们写的SQL是不一样的。 几种表关联方式 1.2 索引 1
作者:fanili,腾讯 WXG 后台开发工程师 知其然知其所以然!本文介绍索引的数据结构、查找算法、常见的索引概念和索引失效场景。 什么是索引? 在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。(百度百科) 索引的目的是提高查找效率,对数据表的值集合进行了排序,并按照一定数据结构进行了存储。 本文将从一个案
调用EXPLAIN可以获取关于查询执行计划的信息,以及如何解释输出。EXPLAIN命令是查看查询优化器如何决定执行查询的主要方法,但该动能也有局限性,它的选择并不总是最优的,展示的也并不一定是真相。
当你新接触一个数据库,对其中的数据库,表,字段什么的都不清楚,这时候需要查找某个字段,怎么办呢? 比如,你新接触了一个数据库,其中有20多个库,每个库里面有500+的表格,你这个时候想找用户的昵称字段
在系统性能问题中,数据库往往是性能的瓶颈关键因素。那么如何去检测mysql的性能问题,如何构建高性能的mysql,如何编写出高性能的sql语句?为此,整理一些建议。
Mysql5.7版本以后新增的功能,Mysql提供了一个原生的Json类型,Json值将不再以字符串的形式存储,而是采用一种允许快速读取文本元素(document elements)的内部二进制(internal binary)格式,并提供了不少内置函数,通过计算列,甚至还可以直接索引json中的数据。
本来这篇文章我前两个星期就打算写了,提纲都列好了,但是后面我去追《漫长的季节》这部剧去了,这就花了一个周末的时间,再加上后面一些其它的事,导致没来得及写
领取专属 10元无门槛券
手把手带您无忧上云