以下是其github代码库:https://github.com/Qihoo360/Atlas
社会数字化、智能化的发展进程中,海量的数据带来巨大挑战,各行各业都在加速数字化转型,越来越多的企业意识到数据基础设施是成功的关键。然而,作为数据基础设施的核心,传统数据库例如 MySQL 面临性能和容量瓶颈,通过中间件实现的分库分表方案复杂度高,同时带来高昂的运维成本。
MySQL Fabric具有分片功能,在同一个分片内又可以含有多个数据库,并且由Fabric自动挑选一个适合的作为主数据库,部署成本较高,另外需要应用端来适配改造。
DM(TiDB Data Migration)是由 PingCAP 开发的一体化数据同步平台,支持从 MySQL 或 MariaDB 到 TiDB 的全量数据迁移和增量数据同步。无论是从 MySQL 向 TiDB 进行平滑数据迁移还是用 TiDB 作为多个 MySQL 实例的数据汇总库,都可以通过 DM 来实现。DM 在 TiDB DevCon 2019 上正式开源,经过半年多时间在大量用户、开发者的支持和反馈下,其功能和稳定性越来越完善。在今天,我们宣布 DM 1.0 GA 正式发布。
本文是《分库分表ShardingSphere5.x原理与实战》系列的第三篇文章,本文将为您介绍 ShardingSphere 的一些基础特性和架构组成,以及在 Springboot 环境下通过 JAVA编码 和 Yml配置 两种方式快速实现分库分表。
前篇: 《假如让你来设计数据库中间件》 《数据库中间件TDDL调研笔记》 《数据库中间件cobar调研笔记》 《数据库中间件mysql-proxy调研笔记》 13年底负责数据库中间件设计时的调研笔记,拿出来和大家分享,轻拍。 一、Atlas是什么 奇虎360的一个mysql数据库中间层项目 在mysql官方推出的mysql-proxy0.8.2的基础上改的 基于服务端的中间件 画外音:数据库中间件有基于服务端的,也有基于客户端的,TDDL属于后者;而cobar和Atlas是一个中间层服务,属于前者。 二
分表 - 从表面意思上看呢,就是把一张表分成N多个小表,每一个小表都是完正的一张表。分表后数据都是存放在分表里,总表只是一个外壳,存取数据发生在一个一个的分表里面。分表后单表的并发能力提高了,磁盘I/O性能也提高了。并发能力为什么提高了呢,因为查寻一次所花的时间变短了,如果出现高并发的话,总表可以根据不同 的查询,将并发压力分到不同的小表里面。
Mycat是一款基于阿里开源产品Cobar而研发的开源数据库分库分表中间件(基于Java语言开发)。官网所言:Mycat国内最活跃的、性能最好的开源数据库中间件!
1 分库分表,我们使用业务逻辑 + 业务程序的方式来进行,并期根据实际的环境将系统中的一些表分割到不同的MYSQL 服务器上存储,达到以下两个关键问题的解决。
这段时间团队在梳理mysql使用上的一些痛点(分库分表、读写分离、权限控制、监控告警、日志审计等),也调研了业内一些mysql中间件的实现,这里把对问题域的思考,以及常见中间件整理沉淀一下
Atlas是由 Qihoo 360公司Web平台部基础架构团队开发维护的一个基于MySQL协议的数据中间层项目。它在MySQL官方推出的MySQL-Proxy 0.8.2版本的基础上,修改了大量bug,添加了很多功能特性。目前该项目在360公司内部得到了广泛应用,很多MySQL业务已经接入了Atlas平台,每天承载的读写请求数达几十亿条。
文章集中整理总结mysql分库分表开源产品,分布式数据库的设计,以及实际应用案例等相关内容,部分附上本文作者实际应用过程中的理解。
所以整体使用逻辑备份(mysqldump), 个别大表使用物理备份(导出表空间)
介绍 随着数据量的不断增大,传统的直连数据库对数据进行访问的方式已经无法满足一般公司的需求。通过数据库中间件,可以对数据库进行水平扩展,由原来单台数据库扩展到多台数据库,数据库中间件通过路由规则将数据的访问请求路由到其中一台数据库上,从而大大降低了数据访问的瓶颈和单台数据库的压力。通过数据库中间件还可以将DBA和研发进行解耦,提升DBA运维效率。 奇虎360公司开源的Atlas是优秀的数据库中间件,美团点评DBA团队针对公司内部需求,在其上做了很多改进工作,形成了新的高可靠、高可用企业级数据库中间件DBP
内容为慕课网的《高并发 高性能 高可用 Mysql 实战》视频的学习笔记内容和个人整理扩展之后的笔记,这一节讲述三高架构的另外两个部分切换和扩展,扩展指的是分库分表减轻数据库的压力,同时因为分库分表需要针对节点宕机问题引入了一些优化手段,而切换部分就是讲述节点宕机的切换问题的,最后我们结合复制的主从切换讲述如何搭建一个三高的架构。
如果数据多到一定程度,就需要分库分表来存储数据了,这个一定程度的判断也比较难,总体而言,
本文中的问题精选自上期【你问我答】——数据库专题中读者的提问。【你问我答】是由美团点评技术团队推出的线上问答服务,你在工作学习中遇到的各种技术问题,都可以通过我们微信公众号发问,我们5000+工程师会义务为你解答,欢迎大家踊跃提问。高质量、定义清晰的问题会优先获得解答。 Q1:能不能推荐几本关于SQL的书籍。谢谢!谢谢! A:推荐图灵出的《SQL必知必会(第4版)》,这也是Amazon上最畅销的SQL图书的中文版,写得很明快,概念非常清楚。这本书用来学习关系型数据库也很不错,至少基本概念比大部头的教材说得
当 mysql 的一个大表总数达上亿时,mysql 性能变的很差,且新增或修改字段、索引也需要花费很长时间,至少十几个小时。这种情况,一般的做法是分库分表,这种方法需要业务层根据规则,物理分库分表,比如按照时间分表,业务代码需要兼容。Tidb 是分布式 newsql 数据库,兼容了大部分 mysql 协议和操作,业务不需要调整,数据库性能也能保证。
默认情况下,MongoDB 更侧重高数据写入性能,而非事务安全,MongoDB 很适合业务系统中有大量 “低价值” 数据的场景。但是应当避免在高事务安全性的系统中使用 MongoDB,除非能从架构设计上保证事务安全。
ShardingCore 是一个支持efcore 2.x 3.x 5.x的一个对于数据库分表的一个简易扩展,当然也支持不分表的普通使用,.Net下并没有类似mycat或者sharding-jdbc之类的开源组件或者说有但是并没有非常适用的或者说个人在用过后有一些地方因为限制没法很好使用所以决定自己开发这个库,目前该库暂未支持分库(未来会支持),仅支持分表,该项目的理念是让你可以已最少的代码量来实现自动分表的实现,经过多个开源项目的摸索参考目前正式开源本项目 项目地址 github 喜欢的朋友可以点下star Thanks♪(・ω・)ノ
现场会很多招聘机会、免费的自助餐、免费的活动奖品,以及近距离接触从业超过30年大佬的机会,体验到了寓教于乐的快感,也打破了程序员35岁危机的说法。
抛开业务逻辑的因素,根据不同的版本、不同平台、不同停机时间需求,有不同的可选路径决定迁移方
from https://yq.aliyun.com/articles/596026
分库分表推荐Spring Cloud Alibaba+Seata+Shardingsphere
1)存储引擎概述; (2)MySQL各大存储引擎; (3)InnoDB和MyIsam使用及其原理对比; (4)InnoDB和MyIsam引擎原理; (5)剩余引擎的使用DEMO(主要是Mrg_Myisam分表); 文章目录:(例子下载在最下方) (1)存储引擎概述 为什么要合理选择数据库存储引擎 定义 存储引擎作用 如何修改数据库引擎 怎么查看修改成功 (2)MySQL各大存储引擎 InnoDB 适用场景 MySQL官方对InnoDB的讲解 MyIsam 适用场景 补充:ISAM索引方法–索引顺
众所周知,数据库很容易成为应用系统的瓶颈。单机数据库的资源和处理能力有限,在高并发的分布式系统中,可采用分库分表突破单机局限。本文总结了分库分表的相关概念、全局ID的生成策略、分片策略、平滑扩容方案、以及流行的方案。
1、为什么要分表? 数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。
互联网当下的数据库拆分过程基本遵循的顺序是:垂直拆分、读写分离、分库分表(水平拆分)。每个拆分过程都能解决业务上的一些问题,但同时也面临了一些挑战。
导读:本文详细介绍了中间件,主要从数据库拆分过程及挑战、主流数据库中间件设计方案、读写分离核心要点、分库分表核心要点展开说明。
作者:[美]威廉·肯尼迪(William Kennedy)布赖恩·克特森(Brian
为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?
https://www.cnblogs.com/grefr/p/6087942.html#top
首先声明这篇文章不是标题党,这个类库是 FreeSql.Repository,它作为扩展库现实了通用仓储层功能,接口规范参考 abp vnext 定义,实现了基础的仓储层(CURD)。
Sharding-JDBC是一个开源的适用于微服务的分布式数据访问基础类库,它始终以云原生的基础开发套件为目标。
关系型数据库的事务特性可以帮我们解决很多难题,比如数据的一致性问题,所以常规业务持久化存储都会mysql 来兜底。但mysql 的性能是有限的。当业务规模发展到上百万用户,访问量达到上万QPS时,单台mysql实例很难应付。
mysql作为互联网公司都会用到的数据库,如果在使用过程中出现性能问题,会采用mysql的横向扩展,使用主从复制来提高读性能,要是解决写入问题,需要进行分库分表。本文不会去介绍mysql的高可用,需要了解Mysql高可用架构相关的请戳
如今硬件的性价比越来越高,网络传输速度越来越快,数据库分层的趋势逐渐显现,人们已经不再强求用一个解决方案来解决所有的存储问题,而是通过分层,让缓存与数据库负责各自擅长的业务场景。
schema.xml作为Mycat中最重要的配置文件之一,涵盖了Mycat的逻辑库、逻辑表、分片规则、分片节点即数据源的配置。主要包括一下三组标签
最近发现RadonDB在特性中引入一个新特性:Single table 到分区表快速转换,另外还引进了一个优秀的特性,把现有的MySQL库直接attach到Radon下面。看到这两个特性真是太赞了。可以非常方便用户实现原来的单表,快速变成拆分表,一条命令搞定。具体的issue参考:https://github.com/radondb/radon/issues/436 而且这个特性会在1.0.8这个版本发布。下面我们一块来体验一下吧。该文档可以用于先看看整体思想上有一个认识后再行动。
开源市场上的Java的ORM框架一个都不好用,所以花了几天时间自己撸了一个 OrmKids,欢迎大家下载学习。遇到问题请关注公众号进群大家一起讨论。
mysq中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
传统的将数据集中存储至单一数据节点的解决方案,在容量、性能、可用性和运维成本这三方面难于满足海量数据场景。在单库单表数据量超过一定容量水位的情况下,索引树层级增加,磁盘 IO 也很可能出现压力,会导致很多问题。
圈子里几个常玩的伙伴,聚在一起吃火锅,或者喝咖啡,通常都会问些特技术范儿的问题。上面这个,就是常问的问题之一。
领取专属 10元无门槛券
手把手带您无忧上云