MyCAT是一个开源的分布式数据库组件,在项目里,一般用这个组件实现针对数据库的分库分表功能,从而提升对数据表,尤其是大数据库表的访问性能。而且在实际项目里,MyCAT分库分表组件一般会和MySQL以及Redis组件整合使用,这样就能从“降低数据表里数据量规模”和“缓存数据”这两个维度提升对数据的访问性能。
分片策略(如果要看各个策略的实际操作,看ShardingSphere专题视频即可)
1.0版,普通企业应用基本都是单实例或单库的模式,采用单机实现数据库的访问。再向上,2.0版,随着业务的规模扩展,企业会采用双机数据库,如热备、读写分离的方式来提高性能或可靠性。最后,3.0版,单机实现所有数据的写会遇到最终的瓶颈,因此分库、分表是最终的数据库的高可用的解决方案。今天我们来讲讲用MyCat中间件实现MySql数据库的分库分表的实现。
昨天我们分享了怎么不停机进行分库分表数据迁移(数据库分库分表后,我们生产环境怎么实现不停机数据迁移)后来有好多朋友问我,说他们的系统虽然也到了差不多分表的地步了,但是,不知道具体拆分多少张表,分多了又怕浪费公司资源,分少了又怕后面怎么去扩容,还有另一些朋友说,所在的公司规模还不大,尚在发展中,公司压根就没这么资源给他们这么去拆分。
分布式数据库已经流行好多年,产品非常众多,其中分布式数据库中间件使用场景最广。本文主要是总结如何基于分布式数据库中间件做数据库架构设计,以充分发挥它的分布式能力。各个中间件产品功能核心原理相同,细节上有些区别。这里仅以阿里云的DRDS为例分析,在产品架构、功能、成熟度和市场占有率上,它都比同行产品有优势。
目前,对于互联网海量数据的存储以及处理,按使用场景,分为OLTP(联机事务处理,比如即时交易,强调快速响应与处理)与OLAP(联机分析处理,比如BI,强调多维数据分析)。对于这些数据的存储,主要有两种解决方案,即基于SQL的关系型数据库,和NoSQL的非关系型数据库。 非关系型数据库在某些特定场景下有奇效,比如键值存储(redis,ROMA,Memcached)数据库应用在排行更新,会话保存,面向文档的数据库(mongoDB、couchDB)应用在日志记录,面向列的数据库(Cassandra、HBase)在博客中的应用。关系型数据库最大的问题在于速度与可扩展性上,而这些NoSQL数据库一般部署简单,支持扩展,而且速度极高。 但是,NoSQL目前还是只能做为关系型数据库在某些特定应用场景的补充,不能完全替代严谨规范的关系型数据库。
大家好,这里记录,我每周读到的技术书籍、专栏、文章以及遇到的工作上的技术经历的思考,不见得都对,但开始思考总是好的。
在业务系统中,为了缓解磁盘IO及CPU的性能瓶颈,到底是垂直拆分,还是水平拆分;具体是分库,还是分表,都需要根据具体的业务需求具体分析。
在数据库开发中,创建表是一个至关重要的步骤,优化设计可以显著提升数据库的性能和效率。让我们一起来探讨在MySQL数据库面试中关于表创建及优化的一些问题和技巧。
数据库相关 mysql索引的数据结构,加索引的原则 InnoDB和myiasm的区别,以及常见的mysql优化方案 sql查询优化 说说Mysql的sql优化 mysql的索引,b+树索引是否支持范围查询,联合索引的失效情况 开发中用了那些数据库?回答mysql,储存引擎有哪些?然后问了我悲观锁和乐观锁问题使用场景、分布式集群实现的原理。 数据库索引原理 mysql索引 B+树原理 mysql索引是怎么实现的?b+树有哪些特点?真实的数据存在哪里?哪些情况下建索引?解释下最左匹配原则?现在一个表有三列a
MySQL近两年一直稳居第二,随时有可能超过Oracle计晋升为第一名,因为MySQL的性能一直在被优化,同时安全机制也是逐渐成熟,更重要的是开源免费的。
http://mini.eastday.com/mobile/170809003639242.html
如果数据多到一定程度,就需要分库分表来存储数据了,这个一定程度的判断也比较难,总体而言,
本文转载至:https://mp.weixin.qq.com/s?__biz=MzUzMTkyODc4NQ==&mid=2247486787&idx=1&sn=9738dd8565b0744c05bfb0fe44d2e990&chksm=faba4efdcdcdc7eb6e729ed6c941b064cf8c7c3a7d87eff491d32d4ee7f6423ebd230033d2cc&scene=178&cur_album_id=2869345486221262853#rd
单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。
如果你不想学习除MySQL家族之外的其他数据库技术,并且也想轻松拥有分片技术,那么你可以考虑使用MariaDB的Spider存储引擎。
首先我们来看下什么是Mycat: MyCat:开源分布式数据库中间件, 这里定义的很简单, 就是分布式数据库的中间件. 其实Mycat 是可以时mysql进行集群的中间件, 我们可以对mysql来分
当数据量持续新增,面临着这样一些需求,两台数据库无法容纳,需要数据库扩容,这里选择2台—扩容到3台的模式,如下图:
① 从连接数来看,根据官方文档,5.1.17以上版本,单台mysql数据库的连接数默认是151,上限为10w,虽然可以在上限范围内人为的设置最大连接数,或者建立连接池进行一定程度优化,但单台数据库的性能总是有瓶颈的,当请求量过大的时候,若连接数不够,则会处于阻塞状态
参数优化 ===> 缓存、索引 ====> 读写分离====> 分库分表 (最终方案)
MySQL分表分库是一种数据库架构设计的技术,在特定的场景下可以优化数据库性能和可扩展性。
我们平常在存储数据时,会想到用Mysql关系型数据库、大硬盘文档存储等。但是,面临互联网自媒体时代的出现,采用Mysql来存储微信类评论数据、零碎图片、零碎视频,采用Mysql的数据库,已经力不从心。表现在:1、Mysql数据库字段固定。2、Mysql字段存储内容无法任意增加或删除。3、Mysql数据库水平扩展麻烦(分库分表依靠人手管理,非常麻烦),海量的数据存取存在瓶颈。因此,面临此类问题,Apache在HDFS的基础上推出了HBase的NoSQL数据库,解决此类问题。
来源:https://www.jianshu.com/p/336f682e4b91
最近公司业务系统中的死锁较多,比较担心,并且最近在群里面,经常听到有一些群友,提到为什么MYSQL的死锁监控上比较LOW,但还好的是MYSQL的死锁不是太多。这里触发了我关于死锁的一些看法,延伸到表设计,系统的设计。
分库分表的文章网上非常多,但是大多内容比较零散,以讲解知识点为主,没有完整地说明一个大表的切分、新架构设计、上线的完整过程。
Mycat是一个开源的分布式数据库系统,是一个实现了MySQL协议的的Server,前端用户可以把它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可以用MySQL原生(Native)协议与多个MySQL服务器通信,也可以用JDBC协议与大多数主流数据库服务器通信,其核心功能是分表分库,即将一个大表水平分割为N个小表,存储在后端MySQL服务器里或者其他数据库里;
MySQL本身并没有对单表最大记录数进行限制,这个数值取决于你的操作系统对单个文件的限制本身。业界流传是500万行。超过500万行就要考虑分表分库了。
数据库中间件,所谓中间件,是一类连接软件组件和应用的计算机软件,以便软件各部件之间的通信。
MyCat++ 分库分表:以空间换取时间 1.通过查询mysql中的数据库表([1]),和 mycat中配置的schema([2]) 和 rule([3]) 信息,构建一个路由图 并根据路由规则自动创建子表,mycat server 保存着分库分表的元数据信息,这些元数据信息 可根据[1],[2],[3]进行重建; dataBase-hostNode 分配策略;数据库应该分配在哪台mysql服务器上; table-dataBase 分配策略;表应该分到哪个database里。 分配算法:
在传统的中小公司里面,尤其是以企业内部的办公系统、REP系统,或者体量不是很大的互联网公司里面,搭建一套单库和单表足以应对生产的业务数据量了。而在一些互联网大公司里面,单表每天有上100w的数据业务增量时,就要考虑分库分表的策略了。否则,无论是数据的存储、访问、更新等操作,单库和单表都会影响系统和数据库的性能。
作者:新栋BOOK 原文:https://my.oschina.net/wangxindong/blog/1531596 摘要: 分库分表中有一个最为常见的场景,为了提升数据库的查询能力,我们都会对数据库做分库分表操作。比如订单库,开始的时候我们是按照订单ID维度去分库分表,那么后来的业务需求想按照商家维度去查询,比如我想查询某一个商家下的所有订单,就非常麻烦。这个时候通过数据异构就能很好的解决此问题。 1、定义 何谓数据异构,上周交易部门商品的同事过来做分享,又看到这个词,他的PPT里面是 数据库异构。其
随着近些年信息化大跃进,各行各业无纸化办公产生了大量的数据,而越来越多的数据存入了数据库中。当使用MySQL数据库的时候,单表超出了2000万数据量就会出现性能上的分水岭。并且物理服务器的CPU、内存、存储、连接数等资源有限,某个时段大量连接同时执行操作,会导致数据库在处理上遇到性能瓶颈。为了解决这个问题,行业先驱门充分发扬了分而治之的思想,对大表进行分割,然后实施更好的控制和管理,同时使用多台机器的CPU、内存、存储,提供更好的性能。而分而治之则有两种方式:垂直拆分和水平拆分。
此前,金融信息化建设主要依托原有集中型 IT 架构进行维护扩展,系统规模及复杂程度呈指数级增长,各类瓶颈逐渐暴露,日益增长的数字金融需求同旧式的系统架构缺陷之间的矛盾愈加凸显。
:http://blog.csdn.net/xlgen157387/article/details/51331244
redo log:存储已提交的事务,顺序写入,不需要读取操作 undo log:存储未提交事务,帮助回滚,随机读写操作
前两篇文章重点讲到了Mysql数据库的主从同步和读写分离,使用主从同步实现从数据库从主数据同步数据保持主从数据一致性,读写分离使用主数据库负责写操作,多个从数据库负责读操作,由于从库可以进行拓展,所以处理更多的读请求也没问题。但是如果业务比较多,写请求越来越多要如何处理呢?可能有人说我可以再加一个master分担写操作,但是两个master数据肯定是需要同步的,主主同步 + 主从同步很显然会让我们的系统架构变得更为的复杂。所以本篇文章主要讨论一个对写操作进行切分的技术:分库分表。
今天是《分库分表 ShardingSphere 原理与实战》系列的开篇文章,之前写过几篇关于分库分表的文章反响都还不错,到现在公众号:程序员小富后台不断的有人留言、咨询分库分表的问题,我也没想到大家对于分库分表的话题会这么感兴趣,可能很多人的工作内容业务量较小很难接触到这方面的技能。这个系列在我脑子里筹划了挺久的,奈何手说啥也不干活,就一直拖到了现在。
由Master负责写操作,而Slave作为备库,不开放写权限,但允许读权限,主从之前保持数据同步。
本文包含数据库架构原则、常见的四种架构方案、两种一致性解决方案、以及作者个人的一些见解。
,如果我找出2019年年终的某篇关于POSTGRESQL的文字,那时我应该也是一个“psychotic” .
最近在看TiDB的系统管理课程,对TiDB周边的配套工具做了一下了解,今天总结下。
何谓数据异构,上周交易部门商品的同事过来做分享,又看到这个词,他的PPT里面是 数据库异构。其实我们以前做的事情,也是可以称之为数据异构。比如我们将DB里面的数据持久化到Redis里面去,就是一种数据异构的方式。
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
使用阿里云rds for MySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死。严重影响业务。
本文是《分库分表ShardingSphere5.x原理与实战》系列的第三篇文章,本文将为您介绍 ShardingSphere 的一些基础特性和架构组成,以及在 Springboot 环境下通过 JAVA编码 和 Yml配置 两种方式快速实现分库分表。
数据库在业务体系不大的情况,一般都是单库出现,通过增加主从复制提高SLA。但当业务体量不断扩大,就需要考虑进行数据拆分来解决性能瓶颈问题。
总结:最主要的优化策略还是索引优化和SQL优化,之后就是再调整下Mysql的配置参数,想读写分离、分库分表在系统架构设计的时候就需要确定,后续变更的成本太高。
from https://yq.aliyun.com/articles/596026
领取专属 10元无门槛券
手把手带您无忧上云