作者 | 胡梦宇 审校 | 蔡芳芳 1 背景 随着云原生技术的飞速发展,各大公有云厂商提供的云服务也变得越来越标准、可靠和易用。凭借着云原生技术,用户不仅可以在不同的云上低成本部署自己的业务,而且还可以享受到每一个云厂商在特定技术领域上的优势服务,因此多云架构备受青睐。 知乎目前采用了多云架构,主要是基于以下考虑: 服务多活: 将同一个服务部署到不同的数据中心,防止单一数据中心因不可抗力不能正常提供服务,导致业务被“一锅端”; 容量扩展: 一般而言,在公司的服务器规模达到万台时,单一数据中心就很难
于是,秒杀系统一般会引入MQ、Redis、MySQL、Nginx等中间件,需要对每个中间件进行高性能、高并发、高可用的分析。
1.1 高并发,大流量 1.2 海量数据 存储及管理海量数据,需要大量服务器 1.3 高可用: 7 * 24 小时服务 1.4 用户分布广泛,网络环境复杂 1.5 安全环境恶劣 大型网站几乎每天都被黑客攻击 1.6 需求快速变更,发布频繁 1.7 渐进式发展
SeaweedFS 是一款高效的分布式文件存储系统,最早的设计原型参考了 Facebook 的 Haystack,具有快速读写小数据块的能力。本文将通过对比 SeaweedFS 与 JuiceFS 在设计与功能上的差异,以帮助读者进行更适合自己的选择。
后端服务一般指用户直接看到的远程服务,涉及到网络硬件、逻辑计算、通信协议和数据存储等部分。下面我们将着重介绍高性能后台服务的设计方法和策略。
当前,各大云厂商均推出了Elasticsearch的云上托管服务,并通过提供运维管理、监控告警、日志查看等工具,方便用户进行集群的管理与维护。但在数据接入方面,腾讯云 Elasticsearch Service(ES)在实践中发现,用户仍需单独打通每一个组件的上下游,最终完成整个链路的创建,而数据链路涉及数据源配置、数据采集、数据缓存、数据加工、数据目的等复杂的流程,每一步都需要单独配置的情况下,用户接入以及运维的成本较高。 基于此,腾讯云ES推出了一站式的数据链路可视化接入服务,相对于传统的数据接入,数
这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:
缓存雪崩 数据未加载到缓存中,或者缓存同一时间大面积的失效,从而导致所有请求都去查数据库,导致数据库CPU和内存负载过高,甚至宕机。
通过以上的数据缓存机制和针对高并发场景的优化策略,Ceph能够提供高性能的分布式存储和计算服务。
摘要: 什么是多级缓存 所谓多级缓存,即在整个系统架构的不同系统层级进行数据缓存,以提升访问效率,这也是应用最广的方案之一。我们应用的整体架构如图1所示: 图1 多级缓存方案 整体流程如上图所示: 1)首先接入Nginx将请求负载均衡到应用Nginx,此处常用的负载均衡算法是轮询或者一致性哈希,轮询可以使服务器的请求更加均衡,而一致性哈希可以提升应用Nginx的缓存命中率,相对于轮询,一致性哈希会存在单机热点问题,一种解决办法是热点直接推送到接入层Nginx,一种办法是设置一个阀值,当超过阀值,改为轮询算法。
集群分为几种,用的软件分别是什么? 补充:涉及的组件 1.1、apache 跨平台的网页服务器,主要使用它做静态资源服务器,也可以做代理服务器转发请求 1.2、ngnix 高性能的 HTTP
在实际开发中某些RDD的计算或转换可能会比较耗费时间,如果这些RDD后续还会频繁的被使用到,那么可以将这些RDD进行持久化/缓存,这样下次再使用到的时候就不用再重新计算了,提高了程序运行的效率。
我们在上一篇博客中说到,Redis是一个在内存中存储数据的中间件.用作数据库,数据缓存等方面,在分布式系统中发挥着重要的作用.那么Redis有哪些优点特性呢?
MySQL是一款开源的关系型数据库管理系统,广泛应用于各种场景中。而在实际使用过程中,如何进行内存管理和数据库缓存的优化则是极其关键的一步。下面将着重探讨MySQL中的内存管理和数据库缓存优化技巧。
假设你在超市里买了一箱啤酒,如果你需要每次想喝啤酒就去超市购买,无疑会浪费很多时间和精力。而如果你将一部分啤酒放在家中的冰箱里,每次想喝啤酒时就从冰箱里取出来,那么就不需要频繁前往超市,提高了生活效率。
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段: 1、数据库表设计 项目立项后,开发部根据产品部需求开发项目,开发工程师工作其中一部分就是对表结构设计。对于数据库来说,这点很重要,如果设计不当,会直接影响访问速度和用户体验。影响的因素很多,比如慢查询、低效的查询语句、没有适当建立索引、数据库堵塞(死锁)等。当然,有测试工程师的团队,会做压
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。
保存的是Kafka的Broker信息,/brokers/ids/[0…N],每个临时节点对应一个在线Broker,Broker启动后会创建一个临时节点,代表Broker已经加入集群,可提供服务了,节点名称就是BrokerID,节点内保存了包括Broker的地址、版本号、启动时间等信息。若Broker宕机或与zk集群失联,该临时节点也会消失。
Pipeline大数据架构,面向大数据仓库和大数据处理平台。是基于lambda的大数据架构的变种,增加了企业级服务,而并非只是大数据组件的对切,是一种更落地的方案。 如同骨架之间使用软骨连接起来一样,是一个完整可执行的架构设计。形成Pipeline架构。
相信很少有人看过这个图,因为我刚看见的时候也是挺萌的,在工作中一般大家都用的是Mysql也都会用,但是为啥要看这个呢,我们需要对Mysql的整体有一个简单的认知!
非常抱歉哈,前几天休清明节,一直在开车,顺道看了一场开心麻花的节目《谈判专家》,一直认为喜剧是外表喜性人的天堂,现在才知道美女也可以演的这么搞笑。尤其是朱迪的大长腿。
上一期,和大家分享了12306架构优化思路,本期讲和大家分享YouTube架构设计,阅读了本文你将了解到YouTube初期架构是个什么样子,以此,增强自己站点架构设计的信心。 YouTube网站架构吐槽(上) YouTube作为一个几十亿级别流量的视频网站,其站点维护人员却少之又少,这些技术人员是如何设计YouTube架构,使其具备如此强大的抗压能力的呢,我们接着往下看。 核心技术要点 1)Apache:站点服务器 2)Python:Web应用主要是用Python搞定的 3)Linux(SuSe):操作系统
这个系列属于个人学习网易云课堂MySQL数据库工程师微专业的相关课程过程中的笔记,本篇为其“MySQL数据库对象与应用”中的MySQL数据类型相关笔记。
将帅无能,累死三军;架构不行,耗死码农。 架构之于软件,同地基之于大厦。 地基腐则大厦塌,架构烂则软件败
导语 | 缓存+存储的系统架构是目前常见的系统架构,缓存层负责加速访问,存储层负责存储数据。这样的架构需要业务层或者是中间件去实现缓存和存储的双写、冷热数据的交换,同时还面临着缓存失效、缓存刷脏、数据不一致等问题。本文是对腾讯云数据库高级产品经理邹鹏老师在「云加社区沙龙online」的分享整理,希望与大家一同交流~ 点击视频,查看完整直播回放 前言 在互联网和移动互联网两波浪潮的推动下,存储技术有了飞速发展。移动互联网用户在过去十年增长了10倍,用户的增长带动了数据量的指数级增长,因为激烈的市场竞争,企
比如小米秒杀,三星秒杀都是瞬时抢走十几万台手机,天猫最快破亿的一个旗舰店,双十一峰值可达到60w以上的qps。后端的k-v集群峰值可达几千万qps,单机可达到30w qps,这些主要是读流量,写流量则小的多,比如对应时间点的减库存写操作也就几kqps。
缓存通常位于内存中,内存的空间通常比磁盘空间小的多,因此缓存的最大空间不可能非常大。
在互联网和移动互联网两波浪潮的推动下,存储技术有了飞速发展。移动互联网用户在过去十年增长了10倍,用户的增长带动了数据量的指数级增长,因为激烈的市场竞争,企业和用户对应用程序的响应性能要求越来越高,在完美应对庞大的用户规模和海量数据集的同时保证优秀的产品体验,是数据库面临的挑战。
目前网站架构一般分成网页缓存层、负载均衡层、 WEB 层和数据库层,我其实一般还会多加一层,即文件服务器层,这样我们在后面的讨论过程中,我们可以依次用这五层对网站架构来进行讨论;这里为了更具有说服力,我将用三个并发较大的生产环境来说明下,一个是我现在维护的电子商务网站(并发最大峰值 2900,日 PV500 万左右)、我目前维护的电子广告网站(并发最大峰值 1500,日 PV150 万左右)、以前维护的大型 CDN 门户广告网站(并发最大峰值 5000,日 PV5000 万左右)。 网页缓存层 首先
CPU 缓存、浏览器缓存、CDN 缓存、DNS 缓存、内存缓存、 Redis 缓存等,它们都是将数据缓存在离使用者更近的地方,或者读取速度更快的存储介质中,通过空间换时间的方式实现性能优化的。
首先需要尽可能的了解优化问题,收集问题期间系统信息并做好存档。根据当前系统问题表现制定优化目标并与客户沟通目标达成一致;通过一系列工具分析系统问题,制定优化方案,方案评审完成后由各负责人员进行实施。若达到优化目标则编写优化报告,否则需要重新制定优化方案。
从网上去搜数据库优化基本都是从SQL层次进行优化的,很少有提及到数据库本身的实例优化。就算有也都是基于某个特定数据库的实例优化,本文涵盖目前市面上所有主流数据库的实例优化(Oralce、MySQL、POSTGRES、达梦),按照文章的配置能够将你数据库性能用到80%或以上。
Kafka有很多状态机和管理器,如Controller通道管理器ControllerChannelManager、处理Controller事件的ControllerEventManager等。这些管理器和状态机,大多与各自“宿主”联系密切。就如Controller这俩管理器,必须与Controller组件紧耦合,才能实现各自功能。
Impala并没有保存自己元数据的后端的关系型数据库,它通过连接到Hive Metastore来获取元数据并缓存到Catalog Server,如大家所知,Hive Metastore则是连接后端的MySQL关系型数据库。Catalog Server除了缓存Hive Metastore的数据,同时还会找NameNode和Sentry Server去拉取HDFS文件路径相关元数据,以及安全策略的元数据,随后将其压缩并发送到Statestore以广播给所有Impala Daemon,如果做了Coordinator和Executor分离,则Statestore只广播给Coordinator。
集群技术在现代计算领域扮演着至关重要的角色,它为我们提供了高可用性、负载均衡、扩展性等重要特性。然而,集群中的节点之间的协同工作也会引发一些有趣的现象,其中之一就是羊群效应。本文将深入探讨羊群效应的原理、常见应用场景,并通过代码示例演示如何应对和利用这一现象。希望本文不仅能帮助您理解羊群效应,还能引发您的兴趣,欢迎您在文章末尾点赞、评论并分享您的看法。
# MySQL 表类型和存储引擎 mysql 表类型和存储引擎 基本介绍 主要的存储引擎/表类型特点 细节说明 三种存储引擎表使用案例 如何选择表的存储引擎 # mysql 表类型和存储引擎 # 基本介绍 # 主要的存储引擎/表类型特点 特点 Myism InnoDB Memory Archive 批量插入的速度 高 底 高 非常高 事务安全 支持 全文索引 支持 锁机制 表锁 行锁 表锁 行锁 存储限制 没有 64TB 有 没有 B树索引 支持 支持 支持 哈希索引 支持 支持 集
Druid进程可以以任意方式进行部署,为了方便部署,建议分为三种服务器类型:主服务器(Master)、查询服务器(Query)、数据服务器(Data)。
云知声是一家专注于语音及语言处理的技术公司。Atlas 超级计算平台是云知声的计算底层基础架构,为云知声在 AI 各个领域(如语音、自然语言处理、视觉等)的模型迭代提供训练加速等基础计算能力。Atlas 平台深度学习算力超过 57 PFLOPS(5.7 亿亿次/秒,是的你没有看错,是亿亿次]
导读:网易大数据平台的底层数据查询引擎,选用了Impala作为OLAP查询引擎,不但支撑了网易大数据的交互式查询与自助分析,还为外部客户提供了商业化的产品与服务。今天将为大家分享下Impala在网易大数据的优化和实践。
毫末智行是一家致力于自动驾驶,提供智能物流解决方案的人工智能技术公司。数据智能是毫末智行的核心能力,乘用车自动驾驶系统及解决方案、低速无人车生态系统及解决方案、自动驾驶相关产品研发与定制服务三大垂类产品为数据智能服务,同时,数据智能也反哺三大垂类产品。
在上一次课redis入门的过程中我们讲过随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库 上都出现了性能问题,web程序不再仅仅关注在功能上,同时也开始追求性能,Memcached(缓存)自然 成为一个非常时尚的技术产品。 缓存的实质是替数据库挡了一层。主要是减轻对数据库的高频率读的压力。频繁被访问的数据可以被放 置于缓存当中,以供频繁访问。
在my.cnf配置文件中设置default-storage-engine参数表示设置默认存储引擎 在MySQL的连接上设置当前连接的默认存储引擎
MySQL是一种关系型数据库管理系统,用于存储数据。在高并发的场景下,MySQL的读写性能往往成为瓶颈。为了提高应用程序的性能和响应速度,可以使用缓存技术,将经常访问的数据缓存到内存中,避免频繁地读取数据库。
Fluid是CNCF基金会旗下云原生环境中数据密集型应用的高效支撑平台,项目自开源发布以来吸引了众多相关方向领域专家和工程师的关注,在大家的积极反馈下社区不断演进。近期 Fluid 0.6 版本正式发布,在该版本中,Fluid 主要新增改善以下三个方面内容:
墨菲定律 - 任何事没有表面看起来那么简单 - 所有的事都会比预计的时间长 - 可能出错的事情总会出错 - 担心某种事情发生,那么它就更有可能发生
Redis是一种高性能的内存数据库,支持多种数据结构和高级功能,可以用于数据缓存、消息队列、实时计算等场景。Redis可以将数据缓存到内存或者磁盘中,支持数据持久化和集群部署,具有很高的可扩展性和可靠性。以下是一个使用Redis的缓存示例:
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇文章主要谈谈MySQL数据库在发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:
领取专属 10元无门槛券
手把手带您无忧上云