当需要查询两个表的交集、并集等数据时,除了嵌套子查询的方式外,还可以使用join的方式提升性能。对于MySQL的join语句,需要两个最基础的“角色”:主表即驱动表,关联表即驱动表。join描述的就是驱动表与被驱动表的关联关系。MySQL有三种关联逻辑处理策略,分别为:Index Nested-Loop Join、Simple Nested-Loop Join、Block Nested-Loop Join。在编写SQL时,需要配合explain使语句选择性能最优的策略。
其实对于上面的观点一定程度上是正确的,但不是完全正确。但之所以流传这么广,主要还是没有搞清楚实际状态,而根据实际使用中总结出来的一些模糊规律。只有了解的MySQL的Join实际执行方式,就会知道上面2种观点是一种模糊的规律,这种规律并不能指导我们实际开发。下面就说说MySQL的实际join执行方式。
EXPLAIN 工具能用于获取查询执行计划,即分析 MySQL 如何执行一个 SQL 语句。我们可以通过使用EXPLAIN 去模拟优化器执行 SQL 语句,从而分析 SQL 语句有没有使用索引、是否采用全表扫描方式、判断能否更进一步优化等。我们可以根据EXPLAIN 输出的数据来分析如何优化查询语句,提升查询语句的性能瓶颈。
我们知道,所谓表连接就是把各个表中的记录都取出来进行依次匹配,最后把匹配组合的记录一起发送给客户端。比如下面把t1表和t2表连接起来的过程如下图
前段时间笔者开发某个项目遇到了MySQL性能问题,每张表的数据量都在五千万以上,个别表数据量甚至在一个亿以上,在开发的过程中遇到了非常多的数据库性能优化难点,笔者在开发过程中查询了很多资料,很多查询语句也在优化过程中取得了比较好的效果。笔者也将开发过程中遇到的sql优化问题总结为文章,以便日后回顾。这篇文章主要讲解mysql执行联结运算的原理。为了避免泄露公司业务及数据,在文章中涉及的sql语句都和公司业务无关。
可以看到上面的执行计划返回了3行结果,id列的值可以看作是SQL中所具有的SELECT操作的序号 由于上述SQL中只有一个SELECT,所以id全为1,因此,我们就要按照由上至下读取执行计划 按照我们的SQL语句,我们会认为执行顺序是a,b,c,但是通过上图可以发现,Mysql并不是完成按照SQL中所写的顺序来进行表的关联操作的 执行对表的执行顺序为a,c,b,这是由于MySQL优化器会根据表中的索引的统计信息来调整表关联的实际顺序
在gorm中,要想从数据库中查找数据有多种方法,可以通过Find、Take和First来查找。但它们之间又有一些不同。本文就详细介绍下他们之间的不同。
在系统性能问题中,数据库往往是性能的瓶颈关键因素。那么如何去检测mysql的性能问题,如何构建高性能的mysql,如何编写出高性能的sql语句?为此,整理一些建议。
索引是帮助数据库高效获取数据的一种数据结构,是基于数据表创建的,它包含了一个表中某些列的值以及记录对应的地址,并且把这些值存在一个数据结构中,常见的有使用哈希表、B+树作为索引。
左边子节点的数据小于父节点数据,右边子节点的数据大于父节点数据。如果col2是索引,查找索引为89的行元素,那么只需要查找两次,就可以获取到行元素所在的磁盘指针地址。
索引类似书本的目录,查询书中的指定内容时,先在目录上查找,之后可快速定位到内容位置。在数据库中通常通过 B 树 / B + 树数据结构实现。
慢查询 // 慢查询 缓慢的查询,低效的性能导致影响正常业务 MySQL默认10秒内没有响应SQL结果,为慢查询 // 检查慢查日志是否开启: show variables like 'slow_query_log'; // 检查慢日志路径 show variables like '%slow_query_log%'; // 开启慢日志 set global slow_query_log=on; // 慢日志判断标准(默认查询时间大于10s的sql语句) show variables like 'long
直接遍历这一行行数据,性能就是O(n),比较慢。为了加速查询,使用了B+树来做索引,将查询性能优化到了O(lg(n))。
近期要做一些sql优化的工作,虽然记得一些常用的sql 优化技巧,但是在工作中还是不够,所以需要借助工具的帮助,数据库的解释计划阐明了sql的执行过程,展示了执行的细节,我们只要根据数据库告诉我们的问题按图索骥的分析就好了,但是解释计划也不是那么容易看懂,所以今天就学习下解释计划的一些参数的意义。
在互联网技术圈中有一个说法:「MySQL 单表数据量大于 2000 W行,性能会明显下降」。网传这个说法最早由百度传出,真假不得而知。但是却成为了行业内一个默认的标准。
总结:最主要的优化策略还是索引优化和SQL优化,之后就是再调整下Mysql的配置参数,想读写分离、分库分表在系统架构设计的时候就需要确定,后续变更的成本太高。
MySQL数据库是许多Web应用程序的底层支持,而查询性能的优化是确保系统高效运行的关键。在MySQL中,EXPLAIN是一项强大的工具,可帮助开发者深入了解查询语句的执行计划,从而更好地优化查询性能。本文将详细解析MySQL的EXPLAIN关键字,以揭开查询执行计划的面纱。
InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万。为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。
数据管理模块,基于mysql数据库进行数据管理以及封装数据管理模块实现数据库访问。因此,在数据库中,我需要为每一张表创建出对应类,通过类实例化的对象来访问这张数据库表中的数 据,这样的话当我们要访问哪张表的时候,使⽤哪个类实例化的对象即可。
最近面试过程中问了MySQL的Explain的使用,问了:Explain你最关注哪些字段?
InnoDB 一棵 B + 树可以存放多少行数据?这个问题的简单回答是:约 2 千万
上篇博客,我们详细的说明了mysql的索引存储结构,也就是我们的B+tree的变种,是一个带有双向链表的B+tree。那么我今天来详细研究一下,怎么使用索引和怎么查看索引的使用情况。
在 MySQL 官方提到,改善操作性能的最佳方法 SELECT 在查询中测试的一个或多个列上创建索引。索引条目的作用类似于指向表行的指针,从而使查询可以快速确定哪些行与WHERE子句中的条件匹配,并检索这些行的其他列值。所有MySQL数据类型都可以建立索引。
select查询的序列号,包含一组数字,表示查询中执行select子句或者操作表的顺序 id号分为三种情况: 1、如果id相同,那么执行顺序从上到下 2、如果id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行 3、id相同和不同的,同时存在:相同的可以认为是一组,从上往下顺序执行,在所有组中,id值越大,优先级越高,越先执行
原文链接:https://www.cnblogs.com/leefreeman/p/8315844.html
MySQL 官方文档地址: 8.8 Understanding the Query Execution Plan
本文简单讲述了PHP数据库编程之MySQL优化策略。分享给大家供大家参考,具体如下: 前些天看到一篇文章说到PHP的瓶颈很多情况下不在PHP自身,而在于数据库。我们都知道,PHP开发中,数据的增删改查是核心。为了提升PHP的运行效率,程序员不光需要写出逻辑清晰,效率很高的代码,还要能对query语句进行优化。虽然我们对数据库的读取写入速度上却是无能为力,但在一些数据库类扩展像memcache、mongodb、redis这样的数据存储服务器的帮助下,PHP也能达到更快的存取速度,所以了解学习这些扩展也是非常必要,这一篇先说一下MySQL常见的优化策略。 几条MySQL小技巧 1、SQL语句中的关键词最好用大写来书写,第一易于区分关键词和操作对象,第二,SQL语句在执行时,MySQL会将其转换为大写,手动写大写能增加查询效率(虽然很小)。 2、如果我们们经对数据库中的数据行进行增删,那么会出现数据ID过大的情况,用ALTER TABLE tablename AUTO_INCREMENT=N,使自增ID从N开始计数。 3、对int类型添加 ZEROFILL 属性可以对数据进行自动补0 4、导入大量数据时最好先删除索引再插入数据,再加入索引,不然,mysql会花费大量时间在更新索引上。 5、创建数据库书写sql语句时 ,我们可以在IDE里创建一个后缀为.sql的文件,IDE会识别sql语法,更易于书写。更重要的是,如果你的数据库丢失了,你还可以找到这个文件,在当前目录下使用/path/mysql -uusername -ppassword databasename < filename.sql来执行整个文件的sql语句(注意-u和-p后紧跟用户名密码,无空格)。 数据库设计方面优化 1、数据库设计符合第三范式,为了查询方便可以有一定的数据冗余。 2、选择数据类型优先级 int > date,time > enum,char>varchar > blob,选择数据类型时,可以考虑替换,如ip地址可以用ip2long()函数转换为unsign int型来进行存储。 3、对于char(n)类型,在数据完整的情况下尽量较小的的n值。 4、在建表时用partition命令对单个表分区可以大大提升查询效率,MySQL支持RANGE,LIST,HASH,KEY分区类型,其中以RANGE最为常用,分区方式为:
使用EXPLAIN关键字可以模拟优化器执行SQL语句,分析查询语句或是结构的性能瓶颈。在select语句之前增加explaion关键字,MySQL会在查询上设置一个标记,执行查询会返回执行计划的信息,而不是执行SQL。
mysqladmin 是一个执行管理操作的客户端程序。可以用它来检查服务器的配置和当前状态、创建并删除数据库等。
索引是一种数据结构。官方描述为:索引(Index)是帮助MySQL高效获取数据的数据结构。因此我们针对索引的使用和优化,本质上也是基于一种特殊的数据结构进行的优化。总结下innodb的索引特点:
本文简单讲述了PHP数据库编程之MySQL优化策略。分享给大家供大家参考,具体如下:
今天这篇文章,我就先跟你说说join语句到底是怎么执行的,然后再来回答这两个问题。
在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询时,会返回执行计划的信息,而不是执行这条SQL(如果 from 中包含子查询,仍会执行该子查询,将结果放入临时表中)
注:数据库里的数据顺序是按照创建时间存储并排序的,对应List的元素索引从小到大,即索引值越大,这条数据的创建时间越晚,与数据库里的顺序是对应的。 (默认排序,即ORDER BY CREATE_TIME ASC)
作者:李平 https://www.cnblogs.com/leefreeman/p/8315844.html?from=singlemessage&isappinstalled=0 一个问题? In
作者丨李平 https://www.cnblogs.com/leefreeman/p/8315844.html?from=singlemessage&isappinstalled=0 一个问题? I
因为这是可以算出来的,要搞清楚这个问题,我们先从 InnoDB 索引数据结构、数据组织方式说起。
来源 | https://www.cnblogs.com/leefreeman/p/8315844.html
因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。
今天这篇文章,我就先跟你说说 join 语句到底是怎么执行的,然后再来回答这两个问题。
MySQL 之 -- 一条更新的 SQL 如何执行,一条更新的 SQL 语句如何执行执行流程一条 SQL 的执行流程如图所示:(图片来源于网络) 如图所示:MySQL 数据库主要分为两个层级:服务层和存储引擎层服务层:server 层包括连接器、查询缓存、分析器、优化器、执行器,包括大多数 MySQL 中的核心功能所有跨存储引擎的功能也在这一层实现,包括存储过程、触发器、视图等。 执行流程 一条 SQL 的执行流程如图所示:(图片来源于网络) 如图所示: MySQL 数据库主要分为两个层级:服务层和存
这条SQL执行包含了PRIMARY、DEPENDENT SUBQUERY、DEPENDENT UNION和UNION RESULT
调用EXPLAIN可以获取关于查询执行计划的信息,以及如何解释输出。EXPLAIN命令是查看查询优化器如何决定执行查询的主要方法,但该动能也有局限性,它的选择并不总是最优的,展示的也并不一定是真相。
(下面这张图为计算机组成原理内容,每查询一次索引节点,都会进行一次磁盘IO读取,即要寻道和旋转)
安装数据库: pip3 install pymysql 进行数据库的更新、插入、查询等操作: 1 #!/usr/bin/python3.4 2 # -*- coding: utf-8 -*- 3 4 #-----------------原表格----------------- 5 6 #+-------+-----------+------------+------+ 7 #| mid | name | birth | sex | 8 #+-------+---
点击上方蓝色“程序猿DD”,选择“设为星标” 回复“资源”获取独家整理的学习资料! 来源:cnblogs.com/leefreeman/p/8315844.html 一个问题? InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万。为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。 我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛。在计算机中磁盘存储数据最小单元是扇区,一个扇区的大
领取专属 10元无门槛券
手把手带您无忧上云