MYSQL的查询缓存本质上是缓存SQL的hash值和该SQL的查询结果,如果运行相同的SQL,服务器将直接从缓存中删除结果,不再分析、优化、最低成本的执行计划等一系列操作。
在mysql服务器高负载的情况下,必须采取一种措施给服务器减轻压力,减少服务器的I/O操作。一般采用的方法是优化sql操作语句,优化服务器的配置参数,从而提高服务器的性能。Mysql使用了几种内存缓存数据的策略来提高性能。 一、mysql的缓存机制 Mysql缓存主要包括关键字缓存(key cache)和查询缓存(query cache),这主要讲解mysql的查询缓存(query cache)机制。 1.查询缓存概述 在mysql的性能优化方面经常涉及到缓冲区(buffer)和缓存(cache
当数据量比较大,若SQL语句写的不合适,会导致SQL的执行效率低,我们需要等待很长时间才能拿到结果
当我们输入不管大小写都能查询到数据,例如:输入 lingyejun 或者Lingyejun ,LingYeJun都能查询同样的结果,说明查询条件对大小写不敏感。 CREATE TABLE NAME(name VARCHAR(10));
之前在网上看到过很多关于mysql联合索引最左前缀匹配的文章,自以为就了解了其原理,最近面试时和大牛交流中,发现遗漏了些东西,这里自己整理一下这方面的内容。
设计好MySql的索引可以让你的数据库飞起来,大大的提高数据库效率。设计MySql索引的时候有一下几点注意:
在公司实习的时候,导师分配了SQL慢查询优化的任务,任务是这样的:每周从平台中导出生产数据库的慢查询文件进行分析。进行SQL优化的手段也主要是修改SQL写法,或者新增索引。
Hive是一种基于Hadoop的数据仓库软件,可以将结构化数据文件映射为一张数据库表,并提供了类SQL查询接口,使得用户可以使用SQL类语言来查询数据。Hive可以处理包括文本、CSV、JSON、ORC和Parquet等格式的数据文件,支持数据的导入、导出、转换等操作。Hive可以在Hadoop集群上运行,利用Hadoop的分布式计算能力,可以处理大规模的数据集。
而我们的连接器就是处理这个过程的,连接器的主要功能是负责跟客户端建立连接、获取权限、维持和管理连接,连接器在使用的过程中如果该用户的权限改变,是不会马上生效的,因为用户权限是在连接的时候读取的,只能重新连接才可以更新权限
以上案例用到的处理器有“QueryDatabaseTable”、“ConvertAvroToJSON”、“SplitJson”、“PutHDFS”四个处理器。
提到mysql查询优化,很多人脑海里可能会想到NOT NULL、合理索引、不使用select *、合适的数据类型等等,可是这些优化技巧是怎么来的?
索引在我们使用MySQL数据库时可以极大的提高查询效率,然而,有时候因为使用上的一些瑕疵就会导致索引的失效,无法达到我们使用索引的预期效果,今天介绍几种MySQL中几种常见的索引失效的原因,可以在以后的工作中尽可能避免因索引失效带来的坑。
在面试中,SQL调优是一个常见的问题,通过这个问题可以考察应聘者对于提升SQL性能的理解和掌握程度。通常来说,SQL调优需要按照以下步骤展开。
Redis和MySQL都是非常流行的开源数据库,各自有其独特的用途和优点。Redis是一个基于内存的键值存储系统,适用于缓存和高速读取操作。而MySQL是一种关系型数据库管理系统,适用于数据存储和复杂查询操作。在某些情况下,将两个数据库集成在一起可以实现更强大的功能。
SQL注入是指Web应用程序对用户输入数据的合法性没有判断,前端传入后端的参数是攻击者可控的,并且参数被带入数据库查询,攻击者可以通过构造不同的SQL语句来实现对数据库的任意操作。
上篇文章我们说了索引排序和排序注意事项,排序不要用复杂的函数,范围查找的时候,左边的列有索引效果,后面的列没有,除非指定特定值,like模糊查询时候,前面不要用%,asc desc不要混用。索引排序之所以快,因为b+树里面的双向链表和单向链表数据结构原本就是按索引从小到大排序好的,所以直接取出数据就好,不需要在磁盘和内存中排序。
mysql查询优化的方法有很多种,explain是工作当中用的比较多的一种检查方式。explain翻译即解释,就是看mysql语句的查询解释计划,从解释计划我们能很清楚的看到解释的语句有没有合理用到索
这里的查询条件包括查询本身、现在查询的数据库、客户协议版本号等可能影响结果的信息。因此,任何两个查询在任何字符上都会导致缓存。
1、重新定义表的关联顺序(多张表关联查询时,并不一定按照SQL中指定的顺序进行,但有一些技巧可以指定关联顺序)
存储过程是用户定义的一系列sql语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。
Query Cache是根据SQL语句来cache的,一个SQL查询如果以select开头,那么MySQL将尝试对其进行缓存 每个Cache都是以完整的SQL语句作为key来存的,两个SQL语句,只
项目方面:项目闪光点、优化点、涉及到的关键技术这些基本都会问,事先最好准备一下、如果有开源项目经验就更好。
这两条sql看似只是limit的数值不同,但是第一个执行耗时3ms,第二个执行耗时66s,相差2000多倍。
0.SQL标准的执行流程(select) (8) SELECT (9) DISTINCT (11) <TOP_specification> <select_list> (1) FROM <left_table> (3) <join_type> JOIN <right_table> (2) ON <join_condition> (4) WHERE <where_condition> (5) GROUP BY <group_by_list> (6) WITH {CUBE ROLLUP} (7)
select查询优化一直是日常开发和数据库运维绕不开的一道坎,SQL的查询速度决定了页面的加载速度,进一步决定了客户浏览体验。
PreparedStatement是用来执行SQL查询语句的API之一,Java提供了 Statement、PreparedStatement 和 CallableStatement三种方式来执行查询语句,其中 Statement 用于通用查询, PreparedStatement 用于执行参数化查询,而 CallableStatement则是用于存储过程。同时PreparedStatement还经常会在Java面试被提及,譬如:Statement与PreparedStatement的区别以及如何避免SQL注入式攻击?这篇教程中我们会讨论为什么要用PreparedStatement?使用PreparedStatement有什么样的优势?PreparedStatement又是如何避免SQL注入攻击的?
在MySQL中,执行计划是优化器根据查询语句生成的一种重要的数据结构,它描述了如何通过组合底层操作实现查询的逻辑。当我们编写一条SQL语句时,MySQL会自动对其进行优化,并生成最优的执行计划以实现更快的查询速度。
PreparedStatement是用来执行SQL查询语句的API之一,Java提供了 Statement、PreparedStatement 和 CallableStatement三种方式来执行查询语句,其中 Statement 用于通用查询, PreparedStatement 用于执行参数化查询,而 CallableStatement则是用于存储过程。同时PreparedStatement还经常会在Java面试被提及,譬如:Statement与PreparedStatement的区别以及如何避免SQL
前言 这篇博客不是我写的,是由刘志军大大翻译的,真心觉得很棒,而且是必学要掌握的东西,所以就转载过来了,我个人的第一篇转载文章。 开始 PreparedStatement是用来执行SQL查询语句的API之一,Java提供了 Statement、PreparedStatement 和 CallableStatement三种方式来执行查询语句,其中 Statement 用于通用查询, PreparedStatement 用于执行参数化查询,而 CallableStatement则是用于存储过程。同时Prepar
Go是一门简单、快速、安全、可靠的编程语言,它提供了强大的标准库和第三方库,可以满足各种应用的开发需求。在Go语言中,使用database/sql标准库可以方便地访问各种关系型数据库。
在数据库管理系统中,查询优化器是一个至关重要的组件,它负责将用户提交的SQL查询转换为高效的执行计划。在MySQL中,查询优化器使用了一个称为“成本模型”的机制来评估不同执行计划的优劣,并选择其中成本最低的那个。本文将深入探讨MySQL的成本模型,以及如何利用这一知识来优化查询性能。
在现代的Web开发中,处理JSON数据已经变得无处不在,而在关系型数据库中高效地查询JSON结构变得愈发重要。MySQL 8.0结合MyBatis-Plus和Spring Boot,为管理和查询JSON数据提供了强大的工具。在本文中,我们将探讨两种使用MySQL 8.0和MyBatis-Plus在Spring Boot应用中查询JSON数据的方法。
关于In与Exists的比较,先说结论,归纳出IN 和Exists的适用场景: 1)IN查询在内部表和外部表上都可以使用到索引。 2)Exists查询仅在内部表上可以使用到索引。 3)当子查询结果集很大,而外部表较小的时候,Exists的Block Nested Loop(Block 嵌套循环)的作用开始显现,并弥补外部表无法用到索引的缺陷,查询效率会优于IN。 4)当子查询结果集较小,而外部表很大的时候,Exists的Block嵌套循环优化效果不明显,IN 的外表索引优势占主要作用,此时IN的查询
mysql缓存机制就是缓存sql 文本及缓存结果,用KV形式保存再服务器内存中,如果运行相同的sql,服务器直接从缓存中去获取结果,不需要在再去解析、优化、执行sql。如果这个表修改了,那么使用这个表中的所有缓存将不再有效,查询缓存值得相关条目将被清空。表中得任何改变是值表中任何数据或者是结构的改变,包括insert,update,delete,truncate,alter table,drop table或者是drop database 包括那些映射到改变了的表的使用merge表的查询,显然,者对于频繁更新的表,查询缓存不合适,对于一些不变的数据且有大量相同sql查询的表,查询缓存会节省很大的性能。
在Python中,可以使用MySQL官方提供的Python库mysql-connector-python来连接和操作MySQL数据库。连接MySQL数据库后,我们可以使用SQL语句执行查询并获取查询结果。在本文中,我们将详细介绍如何处理MySQL查询结果。
“ 在上一篇关系型数据库之MySQL的文章中,我们介绍了什么是关系型数据库以及MySQL查询优化的大体思路,那今天我们就针对具体的语句来看一下,如何优化MySQL的查询语句。”
上周新系统改版上线,上线第二天就出现了较多的线上慢sql查询,紧接着dba 给出了定位及解决方案,这里较多的是使用延迟关联去优化。 而我对于这个延迟关联也是第一次听说(o(╥﹏╥)o),所以今天一定要学习并产出一篇学习笔记。(^▽^)
昨天遇到一个问题, 200万的表里查询9万条数据, 耗时达63秒. 200万数据不算多, 查询9万也还好. 怎么用了这么长的时间呢? 问题是一句非常简单的sql. select * from tk_t
我们通常会在SELECT语句中使用联接,MySQL查询的联接使我们能够利用一个SQL语句查询或操作多个表的数据。
所谓的性能优化,一般针对的是MySQL查询的优化。既然是优化查询,我们自然要先知道查询操作要经过哪些环节,然后思考可以在哪些环节进行优化。
前提:所有实验操作是基于mysql5.6,其他版本可能有差异,届时以具体的情况为准。
数据库优化是一个很常见的面试题,下面就针对这一问题详细聊聊如何进行索引与sql的分析与优化。
前言 上一次课讲解的是sql基于布尔型盲注,紧接着这节讲基于时间的盲注 布尔型盲注,是在我们判断网站是否存在注入的时候,网页不会暴漏错误信息,但会返回正确的页面或者错误的页面,我们基于这种情况,用猜测
目前,最新的DVWA已经更新到1.9版本(点击原文查看链接),而网上的教程大多停留在旧版本,且没有针对DVWA high级别的教程,因此萌发了一个撰写新手教程的想法,错误的地方还请大家指正。 DVWA简介 DVWA(Damn Vulnerable Web Application)是一个用来进行安全脆弱性鉴定的PHP/MySQL Web应用,旨在为安全专业人员测试自己的专业技能和工具提供合法的环境,帮助web开发者更好的理解web应用安全防范的过程。 DVWA共有十个模块,分别是 Brute Force(暴力
PreparedStatement是java.sql包下面的一个接口,用来执行SQL语句查询,通过调用connection.preparedStatement(sql)方法可以获得PreparedStatment对象。数据库系统会对sql语句进行预编译处理(如果JDBC驱动支持的话),预处理语句将被预先编译好,这条预编译的sql查询语句能在将来的查询中重用,这样一来,它比Statement对象生成的查询速度更快。下面是一个例子:
昨天12月2日,MySQL团队放了一个大招——MySQL Database Service with Analytics Engine。这是个什么东西?先看看官网的宣传图片。
1、全局内存缓冲区 1)key_buffer_size 该变量是只存储MyISAM索引信息的全局内存缓冲区。在对应的.MYI文件中的索引数据从磁盘上被读取出来然后存入这个缓冲区。想要调整key_buffer_size的大小,只需要简单统计所有MyISAM表中总索引的大小,然后随着数据随时间增长而调整。 当这个索引码缓冲区中没有足够的空间来存储新的索引数据时,将会用最近最少使用的的方法覆盖掉旧的页面。 2)innodb_buffer_pool_size innodb_buffer_pool_size是用来存储所有InnoDB数据和索引的全局内存缓冲区。对完全使用InnoDB的数据库来说,这是个很重要的缓冲区,一定要正确分配,不正确的分配这个缓冲区可能导致额外的磁盘IO开销并降低查询性能。 常见的方法是把innodb_buffer_pool_size设定为RAM的80%,但是很多情况下这样设定不合理,如RAM大小50G,而数据库总量只有2G。 可以使用SHOW GLOBAL STATUS或者SHOW ENGINE INNODB STATUS命令来监控InnoDB缓冲池的使用情况。 MySQL> SHOW GLOBAL STATUS LIKE 'innodb_buffer%'; +---------------------------------------+--------------------------------------------------+ | Variable_name | Value | +---------------------------------------+--------------------------------------------------+ | Innodb_buffer_pool_dump_status | Dumping of buffer pool not started | | Innodb_buffer_pool_load_status | Buffer pool(s) load completed at 180330 16:27:30 | | Innodb_buffer_pool_resize_status | | | Innodb_buffer_pool_pages_data | 51679 | | Innodb_buffer_pool_bytes_data | 846708736 | | Innodb_buffer_pool_pages_dirty | 0 | | Innodb_buffer_pool_bytes_dirty | 0 | | Innodb_buffer_pool_pages_flushed | 116888 | | Innodb_buffer_pool_pages_free | 1024 | | Innodb_buffer_pool_pages_misc | 4641 | | Innodb_buffer_pool_pages_total | 57344 | | Innodb_buffer_pool_read_ahead_rnd | 0 | | Innodb_buffer_pool_read_ahead | 0 | | Innodb_
前言:在当前的数据分析岗位中,多数人在做着SQL-Boy\SQL-Girl的工作,在数据分析面试中,SQL是必不可少的一环,对于SQL不仅有常见函数用法的考察,更多时候面试官喜欢出一些编程类题目,本文我们来了解一下那些典型的SQL面试题。(文中的问题均以MySQL为例)
领取专属 10元无门槛券
手把手带您无忧上云