本文为作者投稿,作者简介:诸葛子房,曾供职于京东,现就职于BAT,在大数据领域有多年实践经验
在我们日常工作中,经常会做一些数据图表数据分析工具、常见就是饼图、柱状、趋势图等.
但是,MySQL实际执行查询的顺序与书写顺序不同。MySQL优化器会根据内部算法和数据统计信息来决定最佳的执行顺序。以下是MySQL查询语句各个子句的实际执行顺序:
所以说,当公司业务有跨库分析时(一般情况是,业务数据库分布在各个部门),一些数据需要配合其他部门的数据进行关联查询,这个时候可以考虑Presto。但是目前,对于MySQL统计查询在性能上有瓶颈。可考虑将数据按时间段归档到HDFS中,以提高统计效率。
导读 在软件开发的复杂世界中,数据库死锁往往是隐藏在数据操作深处的隐患,它们可能在任何时候无声无息地破坏系统的稳定性。在最新的测试中,测试工程师竟然意外发现了一个潜伏已久的数据库死锁问题。这个发现不仅展示了细致测试的重要性,也提醒我们即使是看似不起眼的系统异常,也可能是潜在大问题的冰山一角。在本文中,我们将深入探讨这个死锁是如何被发现的,以及我们可以从中学到的宝贵经验。
大家好,前面介绍了查询的选择查询、参数查询、交叉表查询和操作查询,本节开始逐步介绍Access中的SQL查询,SQL查询算是查询的进阶部分。
高并发是指在同一个时间点,有很多用户同时的访问URL地址,比如:淘宝的双11、双12、京东618,就会产生高并发。如贴吧的爆吧,就是恶意的高并发请求,也就是DDOS攻击,再屌丝点的说法就像玩撸啊撸被ADC暴击了一样。那伤害你懂得,如果你看懂了,这个说法说明是正在奔向人生巅峰的屌丝!
高并发是指在同一个时间点,有很多用户同时的访问URL地址,比如:淘宝的双11,双12,就会产生高并发,如贴吧的爆吧,就是恶意的高并发请求,也就是DDOS攻击,再屌丝点的说法就像玩撸啊撸被ADC暴击了一样,那伤害你懂得(如果你看懂了,这个说法说明是正在奔向人生巅峰的屌丝。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类 SQL查询功能。
高可用SpringCloud微服务与docker集成实现动态扩容实战
美图拥有十亿级用户,每天有数千万用户在使用美图的各个产品,从而积累了大量的用户数据。
美图拥有十亿级用户,每天有数千万用户在使用美图的各个产品,从而积累了大量的用户数据。 随着 APP 的不断迭代与用户的快速膨胀,产品、运营、市场等越来越依赖于数据来优化产品功能、跟踪运营效果,分析用户
腾讯云 BI 是一款敏捷自助式数据分析的 BI 产品,系统采用敏捷自助式设计,提供从数据接入到模型分析、数据可视化呈现的全流程 BI 能力,能够有效整合企业多业务数据源,帮助经营者快速获取决策数据依据。使用者仅需通过简单拖拽即可完成复杂的报表输出过程,帮助用户快速实现报表的分享、推送、评论互动等协作场景,腾讯云 BI 可以辅助企业经营者快速获取决策数据依据及数据门户看板。
内容提要 一、对EF框架的性能测试 增、删、改,查测试及性能优化 二、使用sql执行 增、删、改,查测试 三、对以上两种方式对比分析 一 对EF框架的测试 1插入操作测试 测试代码(关键部分) List<Collection> list = new List<Collection>(); int i = 0; while (i < count) { Collection
在我做开发的这些年,让我很头痛的一类问题,不是线上故障,而是数据异常,不知道有没有程序员跟我感同身受。
工作流可以提高企业运营效率、改善企业资源利用、提高企业运作的灵活性和适应性、提高工作效率、集中精力处理核心业务、跟踪业务处理过程、量化考核业务处理的效率、减少浪费、增加利润、充分发挥现有计算机网络资源的作用。实施工作流将达到缩短企业运营周期、改善企业内(外)部流程、优化并合理利用资源、减少人为差错和延误,提高劳动生产率等目的。
简单理解下高并发: 高并发是指在同一个时间点,有很多用户同时的访问URL地址,比如:淘宝的双11,双12,就会产生高并发,如贴吧的爆吧,就是恶意的高并发请求, 也就是DDOS攻击,再屌丝点的说法就像玩撸啊撸被ADC暴击了一样,那伤害你懂得(如果你看懂了,这个说法说明是正在奔向人生巅峰的屌丝。 高并发会来带的后果 服务端: 导致站点服务器/DB服务器资源被占满崩溃,数据的存储和更新结果和理想的设计是不一样的,比如:出现重复的数据记录,多次添加了用户积分等。 用户角度: 尼玛,这么卡,老子来参加活动的,刷新了还
【mysql优化专题】:本专题全文围绕mysql优化进行全方位讲解,本篇为优化入门篇,让大家知道为什么要优化,究竟在优化什么。喜欢的朋友可以关注收藏。 优化,一直是面试最常问的一个问题。因为从优化的角
本篇文章主要是记录整体调整Python数据统计分析项目规范性的过程,以及自己的一些思考。
提到mysql查询优化,很多人脑海里可能会想到NOT NULL、合理索引、不使用select *、合适的数据类型等等,可是这些优化技巧是怎么来的?
很显然,这个是混淆后的崩溃,我们用对应的mapping文件排查,定位到了异常的代码如下
寒假前半个月到现在差不多一个多月,断断续续做完了这个项目,现在终于可以开源出来了,我的想法是为这个项目编写一套完整的教程,包括技术选型分析、架构分析、业务逻辑分析、核心技术点分析、常见面试题等。不过说实话,这里面涉及的一些技术我仍然停留在仅仅是会用的阶段,当然,后面我会不断学习,了解透彻这些技术的底层原理,不断完善这套教程。
Java基于ssm开发的视频论坛网站,普通用户可以浏览视频搜索视频评论点赞收藏视频,关注用户。还可以浏览新闻,发布帖子到论坛。
在数据仓库建设中,元数据管理是非常重要的环节之一。根据Kimball的数据仓库理论,可以将元数据分为这三类:
给大家推荐一个程序员学习交流群:863621962。群里有分享的视频,还有思维导图
Hive:由Facebook开源用于解决海量结构化日志的数据统计。 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。 本质是:将HQL转化成MapReduce程序
当前互联网处理的业务场景都极为复杂,各大公司都会根据自己的业务场景搭建微服务来保证单个服务只处理一块业务,这样做能极大的提升开发效率,满足快速迭代的需要,但带来的问题却是多个服务下会导致整体服务的可用性下降。 互联网服务的可用性一般用 SLA(Service Level Agreement 可以翻译为服务水平协议)来表示,而我们通常所说的 N 个 9 就是对高可用服务的一个衡量指标。9 越多代表全年服务可用时间越长,服务会更可靠。 现今互联网架构里保证服务的高可用和高稳定性的时候,无非就是熔断、降级、限流、
Hive是一个构建在Hadoop上的数据仓库框架。最初,Hive是由Facebook开发,后来移交由Apache软件基金会开发,并作为一个Apache开源项目。
因为系统需要重装一下,原来一直用的程序提数设置自动任务的那个软件一时间找不到了。于是就想着自己写一个符合自己需求的python,这里和大家一起分享
很多的时候,在Presto上对数据库跨库查询,例如Mysql数据库。这个时候Presto的做法是从MySQL数据库端拉取最基本的数据,然后再去做进一步的处理,例如统计等聚合操作。
前几天在数据产品经理的群里,有朋友提问“没有数仓,没有数据建模可以做好BI吗”,今天把问题打开一下,不建设数仓,企业能做好数字化转型吗?
"q": "CollectTime:[2014-12-06T00:00:00.000Z TO 2014-12-10T21:31:55.000Z]",
首先需要准备好Java运行环境和Hadoop环境,Hadoop搭建可以参考如下文章:
存放大数据量的表,其表空间占用也比较大,删除数据后并不会自动释放这些记录占用的表空间,所以,即便表里面数据量很少,查询效率依旧很慢,所以,需要释放表空间。
Presto:2012年秋季Facebook内部开始研发,2013年正式对外开源。Presto是Facebook用于补充和替代Hive的产品,主要用于实时场景的交互式数据分析。相比于Hive的SQL on Hadoop,Presto不与Hadoop(MapReduce计算/HDFS存储)的框架模型绑定,其设计目标是SQL on Everything。
大家都知道,至少老读者应该都知道,我是从网管,编程,DBA,数仓一路爬过来的。这么多年的风里雨里多少有些技术上的技巧可以分享给大家。还记得有个曾经抖落过一段小插曲吗,发生在网管装机那个时代。
SQL索引建议是帮助数据库优化器创造最佳执行路径,需要遵循数据库优化器的一系列规则来实现。CloudDBA需要首先计算表统计信息,是因为:
工作1-5年,当我们向老板提出加薪的时候,或者跳槽去“捡”offer的时候,我们底气够吗?
基于 Hadoop 的一个数据仓库工具: hive本身不提供数据存储功能,使用HDFS做数据存储, hive也不分布式计算框架,hive的核心工作就是把sql语句翻译成MR程序 hive也不提供资源调度系统,也是默认由Hadoop当中YARN集群来调度 可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能
微信 API 中,针对用户数据统计可以获得用户增减数据,同时还可以获得用户累计数据。
以互联网行业来说,在移动互联网发展比较成熟的现在,流量见顶,红利消失,企业竞争日趋惨烈,获取新增用户的成本日益增高。很多企业开始意识到不能一味的通过补贴、价格战、广告投放这种简单粗暴的方式抢占市场,这样的运作模式很难长时间维系。而通过精细化和数据化运营来降低成本、提升效率、最大化单用户价值的理念逐渐被越来越多的企业所接受。精细化和数据化运营的前提是要建立起一套完善的数据指标体系,借助这个数据指标体系企业可以有多方面的用途:
在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例子,来为大家说明白—数据挖掘、
昨天下午的时候,收到一条报警信息,提示是一个异机房的从库出现了磁盘空间问题,这类问题看起来蛮好处理的,空间不够清理就是了,比如清理binlog,比如清理一些周期表等等。
这样理解,就简单多啦! 导读:在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例
你需要Spark的十大理由:1,Spark是可以革命Hadoop的目前唯一替代者,能够做Hadoop做的一切事情,同时速度比Hadoop快了100倍以上:LogisticregressioninHadoopandSpark可以看出在Spark特别擅长的领域其速度比Hadoop快120倍以上! 2,原先支持Hadoop的四大商业机构纷纷宣布支持Spark,包含知名Hadoop解决方案供应商Cloudera和知名的Hadoop供应商MapR; 3,Spark是继Hadoop之后,成为替代Hadoop
有了上面的表及数据之后,我们就来看当列中存在 NULL 值时,究竟会导致哪些问题?
上节课我们介绍了MySQL数据写入与where条件查询的基本方法,具体可回顾MySQL数据插入INSERT INTO与条件查询WHERE的基本用法(二)。本节课我们介绍MySQL分组查询与聚合函数的使用方法。
领取专属 10元无门槛券
手把手带您无忧上云