刚入职的时候,同事就提醒过我,涉及三四张表的时候,数据量大,尽量不用连表查询,用单表。我最近还真的是遇到了。因为联表查询导致引发的慢sql。
查询优化器的任务是发现执行 SQL 查询的最佳方案。大多数查询优化器,要么基于规则、要么基于成本。
通过不断的缩小要查询的数据的范围来筛选出最终想要的结果,同时将随机的事件变成顺序事件。
上篇文章我们说了索引排序和排序注意事项,排序不要用复杂的函数,范围查找的时候,左边的列有索引效果,后面的列没有,除非指定特定值,like模糊查询时候,前面不要用%,asc desc不要混用。索引排序之所以快,因为b+树里面的双向链表和单向链表数据结构原本就是按索引从小到大排序好的,所以直接取出数据就好,不需要在磁盘和内存中排序。
为了验证 MySQL 中哪些情况下会导致索引失效,我们可以借助 explain 执行计划来分析索引失效的具体场景。
这次新开了一个个人的mysql专栏,专门用于总结mysql的一些细节以及相关的案例总结,同时也包括了一些mysql的底层实现,在后续的篇章则是根据《mysql技术内幕innodb存储引擎》(第二版)来深入了解mysql中用的最多的存储引擎的内部细节。
“ 在上一篇关系型数据库之MySQL的文章中,我们介绍了什么是关系型数据库以及MySQL查询优化的大体思路,那今天我们就针对具体的语句来看一下,如何优化MySQL的查询语句。”
文章目录 1. Explain 1.1. id 1.1.1. id相同 1.1.2. id不同 1.2. table 2. 索引优化 2.1. 全值匹配 2.2. 最佳左前缀法则 2.3. 不在索引上列上做任何操作 2.4. 不能使用索引中范围条件右边的列(范围之后的索引全失效) 2.5. 使用覆盖索引,少使用select* 2.6. mysql在使用不等于(!=或者<>)的时候无法使用导致全表扫描 2.7. 在使用or的时候,前后两个都是索引的时候才会生效 2.8. is null和is not nu
今天在说Mysql查询优化之前,我先说一个常见的面试题,并带着问题深入探讨研究。这样会让大家有更深入的理解。
业务中有思维导图的功能,涉及到大量的树形结构搜索、查询相关的功能,使用场景上查询量远高于增删改操作,记录一下当前的解决方案。
1、参考书籍:MYSQL 5.5从零开始学 Mysql性能优化就算通过合理安排资源,调整系统参数使MYSQL运行更快,更节省资源。MYSQL性能优化包括查询速度优化,更新速度优化,mysql服务器优化等等。此处,介绍以下几个优化。包含,性能优化的介绍,查询优化,数据库结构优化,mysql服务器优化。 Mysql优化,一方面是找出系统的瓶颈,提高mysql数据库整体的性能,另外一个方面需要合理的结构设计和参数调整,以提高用户操作响应的速度。同时还要尽可能节省系统资源,以便系统可以提供更大负荷的服务。mysql数据库优化是多方面的,原则是减少系统的瓶颈,减少资源的占用,增加系统反应的速度。
但也可能因为你使用错误的SQL语句而无法使用。其中有以下几种,在使用sql查询时尽量避免。
关于这些查找结果的演示推荐:<https://www.cs.usfca.edu/~galles/visualization/Algorithms.html>
like模糊查询形如'%AAA%'和'%AAA'将不会使用索引,但是业务上不可避免可能又需要使用到这种形式。
针对这个问题,首先需要考虑该表记录数是否还会增加,增量是多少,下面就这个面试主要介绍三个方面的优化
阿里编码规范要求:至少要达到 range 级别,要求是 ref 级别,如果可以是 consts 最好
对应的是限制条件(格式类似“field<op>consant”, field表示列对象,op是操作符如"="、">"等)。
mysql 索引我们在面试是必问的,刚好我在拉勾训练营学习了 mysql 索引的相关知识,这里整理下来,自己对MySQL 索引有了全面了理解,面试的时候再也不怕啦。
写在前面:2020年面试必备的Java后端进阶面试题总结了一份复习指南在Github上,内容详细,图文并茂,有需要学习的朋友可以Star一下! GitHub地址:https://github.com/abel-max/Java-Study-Note/tree/master
客户端提交一条sql语句,先在查询缓存中查询,如果缓存没有命中,将会进行查表操作。查表的流程总结过为如下:
MySQL是我们非常常用的关系型数据库,非常重要,所以在这里给大家整理下MySQL的高级内容。
当我们希望MySQL能够以更高的性能进行查询时,弄清楚MySQL中是如何优化和执行查询的就显得很有必要,这里,先搬出来一张图镇楼:
“你一定又写了烂SQL了!”,“你怎么这样凭空污人清白……慢查询,慢查询不能算烂……慢查询!……程序猿的事,能算烂么?” 本文从SQL执行效率方面略作研究,偏向基础性总结,但力求详实准确。如果有大佬误入此地,还请从容撤退,如果你真的愿意看,我也没什么意见。
MySQL已经成为世界上最受欢迎的数据库管理系统之一,无论是用在小型开发项目上,还是用在构建那较大型的网站,MySQL都用实力证明了自己是一个稳定、可靠、快速、可信的系统,足以胜任任何数据存储业务的需要。
上一篇mysql进阶优化篇,我们介绍了数据库的性能分析工具,知道了怎么发现数据库的性能问题,这一篇博客我们将介绍索引失效的10种情况及原理
提到mysql查询优化,很多人脑海里可能会想到NOT NULL、合理索引、不使用select *、合适的数据类型等等,可是这些优化技巧是怎么来的?
MySQL 分析器是 MySQL 数据库系统中的一个关键组件,它负责解析 SQL 查询语句,确定如何执行这些查询,并生成查询执行计划。分析器将 SQL 语句转换为内部数据结构,以便 MySQL 可以理解和执行查询请求。
如何设计最优的数据库表结构,如何建立最好的索引,以及如何扩展数据库的查询,这些对于高性能来说都是必不可少的。但是只有这些还不够,要获得良好的数据库性能,我们还要设计合理的数据库查询,如果查询设计的很糟糕,即使增加再多的只读从库,表结构设计的再合理,索引再合适,只要查询不能使用到这些东西,也无法实现高性能的查询。所以说查询优化,索引优化,库表结构优化需要齐头并进。
需要注意的是,查询的执行顺序可能会因查询的复杂性、索引的存在与否、表的大小以及其他因素而有所不同。MySQL的查询优化器会尽力选择最佳的执行计划,以提高查询性能。同时,可以使用EXPLAIN语句来查看MySQL执行查询时选择的执行计划,以帮助调优查询性能。
开发人员基本都知道,我们的数据存在数据库中(目前最多的是MySQL和Oracle,由于作者更擅长MySQL,所以这里默认数据库为MySQL),服务器通过sql语句将查询数据的请求传入到MySQL数据库。数据库拿到sql语句以后。都是进行了哪些操作呢?这里向大家介绍下我的个人的理解,欢迎大家评论区批评指正。
良好的schema设计原则是普遍适用的,但是MySQL有他自己的实现细节要注意,概况来讲,尽可能保持任何东西小而简单总是好的。
1、MySQL使用基于成本的优化器,它将试图预测查询使用某种执行计划的成本,并从中选出成本最低的优化器。
(0)可以先使用 EXPLAIN 关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮我们分析是查询语句或是表结构的性能瓶颈。
查询的生命周期的下一步是将一个SQL转换成一个可执行计划,MySQL再按照这个计划和存储引擎进行交互
MySQL不用多说,大家都知道它是目前最为活跃热门的开源数据库,由于成本低,操作简易的特点,所以在互联网企业中被广泛使用,即使是头部的BATJ。由此可见,想要在互联网行业混得风生水起,或者说想要进入BATJ等一线互联网公司,那么熟练掌握MySQL必定是一块必要的敲门砖。
天天听人家说 ”查询优化“,以前用sqlite的时候总是不能理解,优化啥?不就那么些语句嘛。 入门MySQL之初,老师讲过一些,大致有点了解。入门(二)的时候写了索引,又了解了一点。 今天再来了解一下具体该如何个 ”查询优化“法。
Elasticsearch 是一个快速、稳定的分布式搜索引擎,能够在大规模数据集上实现高效的全文搜索、分析和可视化。在使用 Elasticsearch 进行搜索时,索引的设计非常关键,它可以对搜索性能和数据质量产生重要影响。
在之前MySQL的版本中,只能通过显式的方式删除索引,如果删除后发现索引删错了,又只能通过创建索引的方式将删除的索引添加回来,如果数据库中的数据量非常大,或者表比较大,这种操作的成本非常高。在MySQL 8.0中,只需要将这个索引先设置为隐藏索引,使查询优化器不再使用这个索引,但是,此时这个索引还是需要MySQL后台进行维护,当确认将这个索引设置为隐藏索引系统不会受到影响时,再将索引彻底删除。这就是软删除功能。
昔日庖丁解牛,未见全牛,所赖者是其对牛内部骨架结构的了解,对于MySQL亦是如此,只有更加全面地了解SQL语句执行的每个过程,才能更好的进行SQL的设计和优化。 当希望MySQL能够以更高的性能运行查询时,最好的办法就是弄清楚MySQL是如何优化和执行查询的。一旦理解了这一点,很多查询优化工作实际上就是遵循一些原则能够按照预想的合理的方式运行。 如下图所示,当向MySQL发送一个请求的时候,MySQL到底做了什么:
大部分的游戏数据库都是使用mysql ,开源,免费是他的法宝,虽然没有oracle 牛逼,但是对于日常的使用,完全够用,所以大多的公司都是使用mysql 作为数据的落地选择,因为之前一直使用的InnoDB 引擎,所以今天今天大概聊一下对数据库的优化原则问题,都是基于InnoDB 引擎,希望你能在遇到同样的问题时能解决问题。OK,我们开始吧。
使⽤ EXPLAIN 判断 SQL 语句是否合理使用索引,尽量避免 extra 列出现:Using File Sort、Using Temporary 等。
查询优化1.1 最大值和最小值的优化1.2 优化 limit 分页1.2.1 使用关联查询优化1.2.2 使用范围查询1.2.3 利用唯一自增序列进行查询防止被优化参考
高并发大数据的互联网业务,架构设计思路是“解放数据库 CPU,将计算转移到服务层”,并发量大的情况下,这些功能很可能将数据库拖死,业务逻辑放到服务层具备更好的扩展性,能够轻易实现“增机器就加性能”。数据库擅长存储与索引,CPU 计算尽量挪到上层
MySQL 是一种流行的开源关系数据库管理系统(RDBMS),其性能和可靠性在各种规模的应用中得到了广泛的验证。尽管 MySQL 本身已经非常高效,但在一些高并发、大数据量的场景下,对其内核进行深度优化是提升性能的关键。本文将详细探讨 MySQL 内核深度优化的若干方面,包括存储引擎优化、查询优化、内存管理优化、并发控制优化以及索引优化等。
今天我们一起来聊聊MySQL 8.x版本中新增的三大索引。MySQL 8.x中新增了三种索引方式,这三种索引方式直接让MySQL原地起飞了,如下所示。
索引的优点 索引的缺点 建索引的几大原则 索引的优点 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。 可以大大加快数据的检索速度,这也是创建索引的最主要的原因。 可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。 在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。 通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能 索引的缺点 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 索引需要占物理空间,除了数据表占数据空间之
领取专属 10元无门槛券
手把手带您无忧上云