https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison
线上有个MySQL 5.7版本的实例,从服务器延迟了3万多秒,而且延迟看起来好像还在加剧。
在一些系统中有时某张表会出现百万或者千万的数据量,尽管其中使用了索引,查询速度也不一定会很快。这时候可能就需要通过分库,分表,分区来解决这些性能瓶颈。
简单来说,微服务架构就是把传统的一个单体应用以一套"小服务"的方式进行开发,这些"小服务"可以运行在不同机器上,它们在自己的进程中运行,"小服务"之间可以通过像是 HTTP API 这样的轻量级的机制进行通信,这些"小服务"紧紧围绕项目的业务需求开发,同时,它们是以业务边界进行划分成独立的微服务。这些微服务看似独立又像是一个整体,构成了一个业务集群。
Cannot delete or update a parent row: aforeign key constraint fails
通过这个 Node.js 和 MySQL 示例项目,我们将看看如何有效地处理 数十亿行 占用 数百GB 存储空间的数据。
局部索引等价于我们通常说的本地索引,与主表的数据结构保持一对一的关系。局部索引没有单独分区的概念,一般来讲,主表的分区方式决定局部索引的分区方式,也就是说假设主表有10个分区,那么对于每个分区来讲,都有一个对应的局部索引。
当我们业务数据库表中的数据越来越多,如果你也和我遇到了以下类似场景,那让我们一起来解决这个问题
1. 什么是表分区 2. 分区的两种方式 2.1 水平切分 2.2 垂直切分 3. 为什么需要表分区 4. 分区实践 4.1 RANGE 分区 4.2 LIST 分区 4.3 HASH 分区 4.4 KEY 分区 4.5 COLUMNS 分区 5. 常见分区命令 6. 小结 松哥之前写过文章跟大家介绍过用 MyCat 实现 MySQL 的分库分表,不知道有没有小伙伴研究过,MySQL 其实也自带了分区功能,我们可以创建一个带有分区的表,而且不需要借助任何外部工具,今天我们就一起来看看。 1. 什么是表分区
在 MySQL 中, InnoDB存储引擎长期以来一直支持表空间的概念。在 MySQL 8.0 中,同一个分区表的所有分区必须使用相同的存储引擎。但是,也可以为同一 MySQL 服务器甚至同一数据库中的不同分区表使用不同的存储引擎。
Linux,Docker,MySQLCommunity8.0.31,InnoDB。
MySQL近两年一直稳居第二,随时有可能超过Oracle计晋升为第一名,因为MySQL的性能一直在被优化,同时安全机制也是逐渐成熟,更重要的是开源免费的。
1、如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择主键作为聚集索引、如果没有显式定义主键,则InnoDB会选择第一个不包含有NULL值的唯一索引作为主键索引、如果也没有这样的唯一索引,则InnoDB会选择内置6字节长的ROWID作为隐含的聚集索引(ROWID随着行记录的写入而主键递增,这个ROWID不像ORACLE的ROWID那样可引用,是隐含的)。
1、如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择主键作为聚集索引。如果没有显式定义主键,则InnoDB会选择第一个不包含有NULL值的唯一索引作为主键索引。如果也没有这样的唯一索引,则InnoDB会选择内置6字节长的ROWID作为隐含的聚集索引(ROWID随着行记录的写入而主键递增,这个ROWID不像ORACLE的ROWID那样可引用,是隐含的)。
日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。
1、如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择主键作为聚集索引。
分区就是将表的数据按照特定规则存放在不同的区域,也就是将表的数据文件分割成多个小块,在查询数据的时候,只要知道数据数据存储在哪些区域,然后直接在对应的区域进行查询,不需要对表数据进行全部的查询,提高查询的性能。同时,如果表数据特别大,一个磁盘磁盘放不下时,我们也可以将数据分配到不同的磁盘去,解决存储瓶颈的问题,利用多个磁盘,也能够提高磁盘的IO效率,提高数据库的性能。常见的分区类型有:Range分区、List分区、Hash分区、Key分区:
MySQL 8.0在内存管理和性能优化方面做了很多改进,而innodb_buffer_pool_size参数仍然是一个关键的参数,它可以显著影响数据库的性能。然而,除了innodb_buffer_pool_size之外,还有其他一些参数也可以用来优化MySQL的性能和内存使用。这里有一些参数和优化措施的例子:
1. 主:binlog线程——记录下所有改变了数据库数据的语句,放进master上的binlog中;
从表面意思上看,MySQL分表就是将一个表分成多个表,数据和数据结构都有可能会变。MySQL分表分为垂直分表和水平分表。
在我们日常处理海量数据的过程中,如何有效管理和优化数据库一直是一个既重要又具有挑战性的问题。
1、因为任何有业务含义的列都有改变的可能性,主键一旦带上了业务含义,那么主键就有可能发生变更。主键一旦发生变更,该数据在磁盘上的存储位置就会发生变更,有可能会引发页分裂,产生空间碎片。
最近在做mysql的数据库优化以及对sql语句优化的指导,写了一点文档,这个大家共勉一下!
MySQL 是一种流行的开源数据库,性能调优是一个非常重要的话题,对实际业务应用有着重大影响。本文将介绍在实际业务场景中遇到的性能问题及解决方案,特别是关于解决查询慢的问题的具体案例。
分页查询是MySQL特有的,一般其他数据库是没有的。分页查询可以从表里取一个范围的行,例如0到50行的的数据,30到100行的数据。
接上篇,上篇主要是从字段类型,索引,SQL语句,参数配置,缓存等介绍了关于MySQL的优化,下面从表的设计,分库,分片,中间件,NoSQL等提供更多关于MySQL的优化。
分区是将一个表的数据按照某种方式,比如按照时间上的月份,分成多个较小的,更容易管理的部分,但是逻辑上仍是一个表。我们在此之前已经讲过MySQL分区表的原理,分区有利于管理非常大的表,它采用分而治之的逻辑,便于对数据的管理。本期我们就来进一步了解MySQL分区表,详细看一下MySQL分区表类型究竟有几个?
第七章 MySQL的高级特性 分区操作时,可以只针对某个区进行操作,而且在底层文件系统中的表现,分区是多个表文件,可以高效地利用多个硬件设备。 如果分区字段中有主键或者唯一索引的列,那么所有的主键和唯一索引列都必须包含进来。 当操作分区表的时候,优化器会判断能否过滤部分分区。 Mysql的分区支持范围,键值,哈希和列表分区。 当数据量超大的时候,B-Tree索引就无法起作用了,除非是索引覆盖查询,否则在回表查数据的时候,会产生大量的随机IO,导致超长的响应时间,而且维护索引的代价非常高。 分离热点能有效利用
B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接,是有序的
如果不是领导强制要求,可能根本不会留意到这款号称世界上功能最强大的开源数据库——PostgreSQL。如果你不读这篇文章,或许也会错过一个跃跃欲试想挤进前三的优秀数据库。
Oracle 数据库是一种功能强大的关系型数据库管理系统,但在处理大量数据时,性能问题可能会成为一个挑战。为了提高数据库的响应速度和效率,我们可以采取一系列的优化措施。本文将重点介绍表分区技术,以提升 Oracle 数据库的性能。
D(持久性),一旦事务完成,无论发生什么系统错误,它的结果都不会受到影响,事务的结果被写到持久化存储器中。底层实现原理是:redo log机制去实现的,mysql 的数据是存放在这个磁盘上的,但是每次去读数据都需要通过这个磁盘io,效率就很低,使用 innodb 提供了一个缓存 buffer,这个 buffer 中包含了磁盘部分数据页的一个映射,作为访问数据库的一个缓冲,从数据库读取一个数据,就会先从这个 buffer 中获取,如果 buffer 中没有,就从这个磁盘中获取,读取完再放到这个 buffer 缓冲中,当数据库写入数据的时候,也会首先向这个 buffer 中写入数据,定期将 buffer 中的数据刷新到磁盘中,进行持久化的一个操作。如果 buffer 中的数据还没来得及同步到这个磁盘上,这个时候 MySQL 宕机了,buffer 里面的数据就会丢失,造成数据丢失的情况,持久性就无法保证了。使用 redolog 解决这个问题,当数据库的数据要进行新增或者是修改的时候,除了修改这个 buffer 中的数据,还会把这次的操作写入到这个 redolog 中,如果 msyql 宕机了,就可以通过 redolog 去恢复数据,redolog 是预写式日志,会先将所有的修改写入到日志里面,然后再更新到 buffer 里面,保证了这个数据不会丢失,保证了数据的持久性,redolog 属于记录修改的操作,主要为了提交或者恢复数据使用!讲完事务的四大特性,再来说下事务的隔离性,当多个线程都开启事务操作数据库中的数据时,数据库系统要能进行隔离操作,以保证各个线程获取数据的准确性,在介绍数据库提供的各种隔离级别之前,来说一下如果不考虑事务的隔离性,会发生的几种问题:第一个问题是脏读,在一个事务处理过程里读取了另一个未提交的事务中的数据。举个例子,公司发工资了,领导把四万块钱打到我的账号上,但是该事务并未提交,而我正好去查看账户,发现工资已经到账,是四万,非常高兴。可是不幸的是,领导发现发给我的工资金额不对,是三万五元,于是迅速修改金额,将事务提交,最后我实际的工资只有三万五元,我就白高兴一场。第二个问题是不可重复读,某个数据在一个事务范围内多次查询却返回了不同的结果,用大白话讲就是事务T1读取数据,事务T2立马修改了这个数据并且提交事务给数据库,事务T1再次读取这个数据就得到了不同的结果,发生了不可重复读。举个例子,我拿着工资卡去消费,系统读取到卡里确实有一百块钱,这个时候我的女朋友刚好用我的工资卡在网上转账,把我工资卡的一百块钱转到另一账户,并在我之前提交了事务,当我扣款时,系统检查到我的工资卡已经没有钱,扣款失败,廖志伟十分纳闷,明明卡里有钱的。第三个问题是幻读,事务T1对一个表的数据做了从“1”修改成“2”的操作,这时事务T2又对这个表插入了一条数据,而这个数据的值还是为“1”并且提交给数据库,操作事务T1的用户再查看刚刚修改的数据,会发现还有一行没有修改。举个例子,当我拿着工资卡去消费时,一旦系统开始读取工资卡信息,这个时候事务开始,我的女朋友就不可能对该记录进行修改,也就是我的女朋友不能在这个时候转账。这就避免了不可重复读。假设我的女朋友在银行部门工作,她时常通过银行内部系统查看我的工资卡消费记录。有一天,她正在查询到我当月信用卡的总消费金额(select sum(amount) from transaction where month = 本月)为80元,而我此时正好在外面胡吃海喝后在收银台买单,消费1000元,即新增了一条1000元的消费记录(insert transaction … ),并提交了事务,随后我的女朋友把我当月工资卡消费的明细打印到A4纸上,却发现消费总额为1080元,我女朋友很诧异,以为出现了幻觉,幻读就这样产生了。
有同事问一个问题, 一张非分区表,是否可以创建分区索引? 答案是可以,但分区索引的类型有限制。 MOS这篇文章给出了答案,以及一些例子,What Is The Global Partitioned I
表可以按range,hash,list分区,表分区后,其上的索引和普通表上的索引有所不同,Oracle对于分区表上的索引分为2类,即局部索引和全局索引,下面分别对这2种索引的特点和局限性做个总结。 局部索引local index
分区是根据一定的规则,数据库把一个表分解成多个更小的、更容易管理的部分。就访问数据库应用而言,逻辑上就只有一个表或者一个索引,但实际上这个表可能有N个物理分区对象组成,每个分区都是一个独立的对象,可以独立处理,可以作为表的一部分进行处理。分区对应用来说是完全透明的,不影响应用的业务逻辑。
原文:http://www.enmotech.com/web/detail/1/739/1.html
列表分区能把几种不同的数据整合在一个分区里,列表分区明确指定了根据某字段的某个具体值进行分区,而不是像范围分区那样根据字段的值范围来划分的。
领取专属 10元无门槛券
手把手带您无忧上云